Characterization of network stationary distribution with batch moving in geometric product form
Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 51-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the exponential network with two independent Poisson enter flows of customer batches: general and additional. The customers of additional flow arrive in empty nodes. The batches required for the service move to other nodes with possible change of size or leave the network according to some irreducible Markov matrix. The batches which don’t achieve the required size are served but after the service is done they leave the network. The criterion of existence of stationary distribution in the form of the product of geometric distributions is established.
Keywords: queueing networks, bathes of customers, stationary distribution, geometric distribution, product form, quasireversibility.
@article{PFMT_2009_1_a7,
     author = {Yu. V. Malinkovskii},
     title = {Characterization of network stationary distribution with batch moving in geometric product form},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {51--59},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2009_1_a7/}
}
TY  - JOUR
AU  - Yu. V. Malinkovskii
TI  - Characterization of network stationary distribution with batch moving in geometric product form
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2009
SP  - 51
EP  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2009_1_a7/
LA  - ru
ID  - PFMT_2009_1_a7
ER  - 
%0 Journal Article
%A Yu. V. Malinkovskii
%T Characterization of network stationary distribution with batch moving in geometric product form
%J Problemy fiziki, matematiki i tehniki
%D 2009
%P 51-59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2009_1_a7/
%G ru
%F PFMT_2009_1_a7
Yu. V. Malinkovskii. Characterization of network stationary distribution with batch moving in geometric product form. Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 51-59. http://geodesic.mathdoc.fr/item/PFMT_2009_1_a7/

[1] E. Gelenbe, “Product Form Queueing Networks with Negative and Positive Customers”, J. Appl. Probab., 28 (1991), 656–663 | DOI | MR | Zbl

[2] E. Gelenbe, R. Shassberger, “Stability of Product-Form G-networks”, Probab. in Eng. and Inform. Sci., 1992, no. 6, 271–276 | DOI | Zbl

[3] X. Chao, M. Pinedo, “On Generalized Networks of Queues with Positive and Negative Arrivals”, Prob. Eng. Inf. Sci., 7 (1993), 301–304 | DOI

[4] E. Gelenbe, “G-networks with Signals and Batch Removal”, Prob. Eng. Inf. Sci., 7 (1993), 335–342 | DOI

[5] E. Gelenbe, “G-networks with Triggered Customer Movement”, J. Appl. Prob., 30 (1993), 742–748 | DOI | MR | Zbl

[6] M. Miyazawa, P. G. Taylor, “A Geometric Product-form Distribution for a Queueing Network with Non-Standard Batch Arrivals and Batch Transfers”, Adv. Appl. Prob., 29:2 (1997), 523–534 | DOI | MR

[7] X. Chao, M. Pinedo, D. Shaw, “A Network of Assembly Queues with Product-form Solution”, J. Appl. Prob., 33 (1996), 858–869 | DOI | MR | Zbl

[8] G. P. Klimov, Stokhasticheskie sistemy obsluzhivaniya, Nauka, M., 1966 | MR | Zbl

[9] F. G. Foster, “On Stochastic Matrices Assosiated with Certain Queueing Process”, Ann. Math. Statist., 24:2 (1953), 355–360 | DOI | MR | Zbl

[10] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962