Recursively recognizable local formations of finite groups
Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 44-50

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\wp$ be some subgroup property and $n$ is a natural number. A formation $\mathfrak F$ is called $\wp_n$-recognizable if $\mathfrak F$ contains each group $G$ having $n$ $\wp$-subgroups belonging $\mathfrak F$. In the paper an original method, based on the concept of T-models for study $\wp_n$-recognizable formations is proposed.
Keywords: finite group, local screen, T-model, $\wp_n$-recognition.
Mots-clés : local formation
@article{PFMT_2009_1_a6,
     author = {A. F. Vasil'ev and T. I. Vasilyeva},
     title = {Recursively recognizable local formations of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {44--50},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2009_1_a6/}
}
TY  - JOUR
AU  - A. F. Vasil'ev
AU  - T. I. Vasilyeva
TI  - Recursively recognizable local formations of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2009
SP  - 44
EP  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2009_1_a6/
LA  - ru
ID  - PFMT_2009_1_a6
ER  - 
%0 Journal Article
%A A. F. Vasil'ev
%A T. I. Vasilyeva
%T Recursively recognizable local formations of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2009
%P 44-50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2009_1_a6/
%G ru
%F PFMT_2009_1_a6
A. F. Vasil'ev; T. I. Vasilyeva. Recursively recognizable local formations of finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 44-50. http://geodesic.mathdoc.fr/item/PFMT_2009_1_a6/