Recursively recognizable local formations of finite groups
Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 44-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\wp$ be some subgroup property and $n$ is a natural number. A formation $\mathfrak F$ is called $\wp_n$-recognizable if $\mathfrak F$ contains each group $G$ having $n$ $\wp$-subgroups belonging $\mathfrak F$. In the paper an original method, based on the concept of T-models for study $\wp_n$-recognizable formations is proposed.
Keywords: finite group, local screen, T-model, $\wp_n$-recognition.
Mots-clés : local formation
@article{PFMT_2009_1_a6,
     author = {A. F. Vasil'ev and T. I. Vasilyeva},
     title = {Recursively recognizable local formations of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {44--50},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2009_1_a6/}
}
TY  - JOUR
AU  - A. F. Vasil'ev
AU  - T. I. Vasilyeva
TI  - Recursively recognizable local formations of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2009
SP  - 44
EP  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2009_1_a6/
LA  - ru
ID  - PFMT_2009_1_a6
ER  - 
%0 Journal Article
%A A. F. Vasil'ev
%A T. I. Vasilyeva
%T Recursively recognizable local formations of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2009
%P 44-50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2009_1_a6/
%G ru
%F PFMT_2009_1_a6
A. F. Vasil'ev; T. I. Vasilyeva. Recursively recognizable local formations of finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 44-50. http://geodesic.mathdoc.fr/item/PFMT_2009_1_a6/

[1] H. Wielandt, “Über die Normalstruktur von mehrfach faktorisierbaren Gruppen”, J. Austral. Math. Soc., 1960, no. 1, 143–146 | DOI | MR | Zbl

[2] O. H. Kegel, “Zur Struktur mehrfach factorisierbarer endlicher Gruppen”, Math. Z., 87:1 (1965), 42–48 | DOI | MR | Zbl

[3] K. Doerk, “Minimal nicht überauflösbare, endliche Gruppen”, Math. Z., 91 (1966), 198–205 | DOI | MR | Zbl

[4] O.-U. Kramer, “Endliche Gruppen mit Untergruppen mit paarweise teilfremden Indizes”, Math. Z., 139:1 (1974), 63–68 | DOI | MR | Zbl

[5] O.-U. Kramer, “Zur Struktur endlicher auflösbarer Gruppen mit mindestens drei Untergruppen von paarweise teilfremden Indizes”, Arch. Math., 26:4 (1975), 361–366 | DOI | MR | Zbl

[6] O.-U. Kramer, “Properties of critical groups”, J. Algebra, 65 (1980), 98–103 | DOI | MR

[7] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 271 pp. | MR | Zbl

[8] W. Guo, The Theory of Classes of Groups, Kluwer Academic Publishers, Dordrecht–Boston–London, 2000, 257 pp. | MR

[9] V. A. Belonogov, “Konechnye gruppy s paroi nesopryazhennykh nilpotentnykh maksimalnykh podgrupp”, Dokl. Akad. nauk SSSR, 161:6 (1965), 1255–1256 | MR | Zbl

[10] V. N. Semenchuk, “Konechnye gruppy s sistemami minimalnykh ne $mathfrak{F}$-grupp”, Podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1981, 138–149 | MR

[11] A. F. Vasilev, “O nekotorykh svoistvakh lokalnykh formatsii”, Voprosy algebry, 1, Universitetskoe, Minsk, 1985, 4–9 | MR

[12] A. F. Vasilev, “K probleme perechisleniya lokalnykh formatsii s zadannym svoistvom”, Voprosy algebry, 3, Universitetskoe, Minsk, 1987, 3–11

[13] B. Höfling, “On the number of conjugacy classes of maximal subgroups in a finite soluble group”, Arch. Math., 72 (1999), 1–8 | DOI | MR

[14] A. F. Vasilev, “Formatsii i ikh razpoznavanie”, Izvestiya Gomelskogo gos. un-ta im. F. Skoriny, 2007, no. 2 (41), 23–29

[15] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[16] J. S. Rose, “Nilpotent subgroups of finite soluble groups”, Math. Z., 106 (1968), 97–112 | DOI | MR | Zbl