Low-energy Compton scattering and poilarizabilities of hadrons
Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 9-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The amplitude of the interaction of the electromagnetic field with structural microparticles was defined on the basis of the gauge invariance approaches and the solutions of the electodynamics' equations using covariant method of the Green function. This amplitude is presented in terms of the electric and magnetic polarizations of compound system using no multipole expansion. In the framework of this approach the Lagrangian of the interaction of electromagnetic field with compound system and the Compton scattering amplitude were obtained taking into account electric and magnetic polarizabilities of the spin-$1/2$ particles.
Keywords: gauge invariance approaches; Green function; electric, magnetic and spin polarizabilities; Compton scattering amplitude.
@article{PFMT_2009_1_a0,
     author = {N. V. Maksimenko},
     title = {Low-energy {Compton} scattering and poilarizabilities of hadrons},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {9--14},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2009_1_a0/}
}
TY  - JOUR
AU  - N. V. Maksimenko
TI  - Low-energy Compton scattering and poilarizabilities of hadrons
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2009
SP  - 9
EP  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2009_1_a0/
LA  - ru
ID  - PFMT_2009_1_a0
ER  - 
%0 Journal Article
%A N. V. Maksimenko
%T Low-energy Compton scattering and poilarizabilities of hadrons
%J Problemy fiziki, matematiki i tehniki
%D 2009
%P 9-14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2009_1_a0/
%G ru
%F PFMT_2009_1_a0
N. V. Maksimenko. Low-energy Compton scattering and poilarizabilities of hadrons. Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 9-14. http://geodesic.mathdoc.fr/item/PFMT_2009_1_a0/

[1] N. V. Maksimenko, L. G. Moroz, “Fenomenologicheskoe opisanie polyarizuemosti elementarnykh chastits v polevoi teorii”, Sbornik trudov 11 Mezhdunarodnoi shkoly molodykh uchenykh po fizike vysokikh energii i relyativistskoi yadernoi fizike, D2-11707 (Dubna), Dubna, 1979, 533–543

[2] V. L. Lyuboshits, Ya. A. Smorodinskii, “Kovariantnoe razlozhenie elektromagnitnogo polya”, ZhETF, 42:3 (1962), 846–855

[3] V. M. Dubovik, A. A. Cheshkov, “Multipolnoe razlozhenie v klassicheskoi i v kvantovoi teorii polya i izluchenie”, Fizika elementarnykh chastits i atomnogo yadra (EChAYa), 5:3 (1974), 791–837 | MR

[4] M. I. Levchuk, L. G. Moroz, “Giratsiya nuklona kak odna iz kharakteristik ego elektromagnitnoi struktury”, Vestsi AN BSSR. Ser. fiz.-mat. nauk, 1985, no. 1, 45–54 | MR

[5] S. Ragusa, “Third order spin polarizabilities of the nucleon”, Phys. Rev. D, 47 (1993), 3757–3767 | DOI

[6] D. Drechsel, B. Pasquini, M. Vanderhaeghen, “Dispersion relations in real and virtual Compton scattering”, Phys. Rept., 378 (2003), 99–205 | DOI

[7] V. G. Baryshevskii, Yadernaya optika polyarizovannykh sred, Energoatomizdat, M., 1995, 315 pp.

[8] A. A. Bogush, L. Moroz, Vvedenie v teoriyu klassicheskikh polei, Nauka i tekhnika, Minsk, 1968, 387 pp. | MR | Zbl

[9] A. A. Bogush, Vvedenie v kalibrovochnuyu polevuyu teoriyu elektroslabykh vzaimodeistvii, Nauka i tekhnika, Minsk, 1987, 359 pp.

[10] S. R. de Groot, L. G. Sattorp, Elektrodinamika, Nauka, M., 1982, 560 pp.

[11] J. S. Anandan, “Classical and quantum interaction of the dipole”, Phys. Rev. Lett., 85 (2000), 1354–1357 | DOI

[12] L. G. Levchuk, A. V. Shebeko, “Ob odnom obobschenii teoremy Zigerta: ispravlennyi variant”, Yadernaya fizika, 56:2 (1993), 145–151

[13] H. A. Bete, E. E. Salpeter, “A relativistic equation for bound-state problems”, Phys. Rev., 84:2 (1951), 1232–1242 | MR

[14] Landau L. D., Livshits E. M., Teoriya polya, Nauka, M., 1973, 365 pp.