Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2025_1_a7, author = {Y. V. Zakharova and A. O. Evtina}, title = {Constructive algorithms for the scheduling problem on~two processors with the maximum time offset criterion taking into account parallelization and energy consumption}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {118--128}, publisher = {mathdoc}, number = {1}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2025_1_a7/} }
TY - JOUR AU - Y. V. Zakharova AU - A. O. Evtina TI - Constructive algorithms for the scheduling problem on~two processors with the maximum time offset criterion taking into account parallelization and energy consumption JO - Prikladnaâ diskretnaâ matematika PY - 2025 SP - 118 EP - 128 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2025_1_a7/ LA - ru ID - PDM_2025_1_a7 ER -
%0 Journal Article %A Y. V. Zakharova %A A. O. Evtina %T Constructive algorithms for the scheduling problem on~two processors with the maximum time offset criterion taking into account parallelization and energy consumption %J Prikladnaâ diskretnaâ matematika %D 2025 %P 118-128 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2025_1_a7/ %G ru %F PDM_2025_1_a7
Y. V. Zakharova; A. O. Evtina. Constructive algorithms for the scheduling problem on~two processors with the maximum time offset criterion taking into account parallelization and energy consumption. Prikladnaâ diskretnaâ matematika, no. 1 (2025), pp. 118-128. http://geodesic.mathdoc.fr/item/PDM_2025_1_a7/
[1] Drozdowski M., Scheduling for Parallel Processing, Springer, Dordrecht, 2009, 386 pp. | MR
[2] Servakh V. V., “An efficiently solvable case of the scheduling problem with renewable resources”, Diskretn. Analiz i Issled. Oper., ser. 2, 7:1 (2000), 75–82 (in Russian) | MR
[3] Kovalenko Yu. V., “On the calendar planning problem with renewable resource”, Autom. Remote Control, 73:6 (2012), 1046–1055 | DOI | MR
[4] Goncharov E. N., “An improved genetic algorithm for the resource-constrained project scheduling problem”, Advances in Optimization and Applications, eds. N. Olenev, Yu. Evtushenko, M. Jaćimović, et al., Springer, Cham, 2022, 35–47 | DOI | MR
[5] Zhuravlev S., Blagodurov S., and Fedorova A., “Addressing shared resource contention in multicore processors via scheduling”, Comput. Archit. News, 38:1 (2010), 129–142 | DOI
[6] Eremeev A. V. and Sakhno M. Yu., “Multi-core processor scheduling with respect to the mutual influence of jobs”, Vych. Met. Programmirovanie, 24:1 (2023), 115–126 (in Russian)
[7] Kononov A. and Kovalenko Y., “On speed scaling scheduling of parallel jobs with preemption”, LNCS, 9869, 2016, 309–321 | MR
[8] Kononov A. and Zakharova Y., “Speed scaling scheduling of multiprocessor jobs with energy constraint and total completion time criterion”, Intern. J. Artif. Intell., 21:2 (2023), 109–129 | MR
[9] Gerards M. E. T., Hurink J. L., and Holzenspies P. K. F., “A survey of offline algorithms for energy minimization under deadline constraints”, J. Scheduling, 19 (2016), 3–19 | DOI | MR
[10] Shabtay D. and Kaspi M., “Parallel machine scheduling with a convex resource consumption function”, Europ. J. Oper. Res., 173:1 (2006), 92–107 | DOI | MR
[11] Complexity Results for Scheduling Problems, , 2024 https://www2.informatik.uni-osnabrueck.de/knust/class/
[12] Lee C.-Y. and Cai X., “Scheduling one and two-processor tasks on two parallel processors”, IIE Trans., 31 (1999), 445–455
[13] Lenstra J. K., Rinnooy Kan A. H. G., and Brucker P., “Complexity of machine scheduling problems”, Ann. Discrete Math., 1 (1977), 343–362 | DOI | MR
[14] Grotschel M., Lovasz L., and Schrijver A., Geometric Algorithms and Combinatorial Optimizations, Springer, Heidelberg, 2009, 332 pp. | MR
[15] Garey M. and Johnson D., Computers and Intractability. A Guide to the Theory of NP-completeness, W. H. Freeman and Company, N.Y., 1979, 338 pp. | MR