Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2025_1_a5, author = {I. V. Los and M. B. Abrosimov}, title = {About the maximum number of vertices in primitive regular graphs with exponent equals $3$}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {98--109}, publisher = {mathdoc}, number = {1}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/} }
TY - JOUR AU - I. V. Los AU - M. B. Abrosimov TI - About the maximum number of vertices in primitive regular graphs with exponent equals $3$ JO - Prikladnaâ diskretnaâ matematika PY - 2025 SP - 98 EP - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/ LA - ru ID - PDM_2025_1_a5 ER -
I. V. Los; M. B. Abrosimov. About the maximum number of vertices in primitive regular graphs with exponent equals $3$. Prikladnaâ diskretnaâ matematika, no. 1 (2025), pp. 98-109. http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/
[1] Wielandt H., “Unzerlegbare nicht negative Matrizen”, Math. Zeitschr., 52 (1950), 642–648 (in German) | DOI | MR
[2] Sachkov V. N. and Oshkin I. B., “Exponents of classes of non-negative matrices”, Discrete Math. Appl., 3:4 (1993), 365–375 | DOI | MR
[3] Saliy V. N., “Minimal primitive extensions of oriented graphs”, Prikladnaya Diskretnaya Matematika, 2008, no. 1(1), 116–119 (in Russian)
[4] Fomichev V. M., “The estimates of exponents for primitive graphs”, Prikladnaya Diskretnaya Matematika, 2011, no. 2(11), 101–112 (in Russian)
[5] Fomichev V. M. and Avezova Ya. E., “The exact formula for the exponents of the mixing digraphs of register transformations”, J. Appl. Ind. Math., 2020, no. 14, 308–320 | DOI | MR
[6] Abrosimov M. B., Los' I. V., and Kostin S. V., “Primitive regular graphs with exponent 2 and up to 16 vertices”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 21:2 (2021), 238–245 (in Russian) | MR
[7] Abrosimov M. B., Kostin S. V., and Los' I. V., “The maximum number of vertices of primitive regular graphs of orders 2, 3, 4 with exponent 2”, Prikladnaya Diskretnaya Matematika, 2021, no. 52, 97–104 (in Russian)
[8] Jin M., Lee S. G., and Seol H. G., “Exponents of $r$-regular primitive matrices”, Inform. Center for Math. Sci., 6:2 (2003), 51–57 | MR
[9] Bueno M. I. and Furtado S., “On the exponent of $r$-regular primitive matrices”, ELA. Electronic J. Linear Algebra, 17 (2008), 28–47 | MR
[10] Kim B., Song B., and Hwang W., “Nonnegative primitive matrices with exponent 2”, Linear Algebra Appl., 2005, no. 407, 162–168 | DOI | MR
[11] Hoffman A. J. and Singleton R. R., “Moore graphs with diameter 2 and 3”, IBM J. Research and Development, 4 (1960), 497–504 | DOI | MR
[12] Meringer M., “Fast generation of regular graphs and construction of cages”, J. Graph Theory, 30 (1999), 137–146 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[13] Smart N. P., Cryptography: An Intoduction, McGraw-Hill, 2003, 433 pp.