About the maximum number of vertices in primitive regular graphs with exponent equals $3$
Prikladnaâ diskretnaâ matematika, no. 1 (2025), pp. 98-109
Voir la notice de l'article provenant de la source Math-Net.Ru
Some results on the maximum number of vertices in primitive regular graphs with exponent $3$ are presented. We have found upper bound of this number depending on the degree $p: n_p \le p^3-p^2-3p+5$. Also, the exact value of the maximum number of vertices in primitive cubic graphs with exponent $3$ is given: $n_3 = 12$. A computation experiment has been conducted, and we have found the number of primitive regular graphs with degree $p \le 9$, number of vertices $n \le 16$ and exponent $3$ for each $(n,p)$ pair.
Keywords:
primitive graph, regular graph, the maximum number of vertices.
@article{PDM_2025_1_a5,
author = {I. V. Los and M. B. Abrosimov},
title = {About the maximum number of vertices in primitive regular graphs with exponent equals $3$},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {98--109},
publisher = {mathdoc},
number = {1},
year = {2025},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/}
}
TY - JOUR AU - I. V. Los AU - M. B. Abrosimov TI - About the maximum number of vertices in primitive regular graphs with exponent equals $3$ JO - Prikladnaâ diskretnaâ matematika PY - 2025 SP - 98 EP - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/ LA - ru ID - PDM_2025_1_a5 ER -
I. V. Los; M. B. Abrosimov. About the maximum number of vertices in primitive regular graphs with exponent equals $3$. Prikladnaâ diskretnaâ matematika, no. 1 (2025), pp. 98-109. http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/