About the maximum number of vertices in primitive regular graphs with exponent equals $3$
Prikladnaâ diskretnaâ matematika, no. 1 (2025), pp. 98-109

Voir la notice de l'article provenant de la source Math-Net.Ru

Some results on the maximum number of vertices in primitive regular graphs with exponent $3$ are presented. We have found upper bound of this number depending on the degree $p: n_p \le p^3-p^2-3p+5$. Also, the exact value of the maximum number of vertices in primitive cubic graphs with exponent $3$ is given: $n_3 = 12$. A computation experiment has been conducted, and we have found the number of primitive regular graphs with degree $p \le 9$, number of vertices $n \le 16$ and exponent $3$ for each $(n,p)$ pair.
Keywords: primitive graph, regular graph, the maximum number of vertices.
@article{PDM_2025_1_a5,
     author = {I. V. Los and M. B. Abrosimov},
     title = {About the maximum number of vertices in primitive regular graphs with exponent equals $3$},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {98--109},
     publisher = {mathdoc},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/}
}
TY  - JOUR
AU  - I. V. Los
AU  - M. B. Abrosimov
TI  - About the maximum number of vertices in primitive regular graphs with exponent equals $3$
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2025
SP  - 98
EP  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/
LA  - ru
ID  - PDM_2025_1_a5
ER  - 
%0 Journal Article
%A I. V. Los
%A M. B. Abrosimov
%T About the maximum number of vertices in primitive regular graphs with exponent equals $3$
%J Prikladnaâ diskretnaâ matematika
%D 2025
%P 98-109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/
%G ru
%F PDM_2025_1_a5
I. V. Los; M. B. Abrosimov. About the maximum number of vertices in primitive regular graphs with exponent equals $3$. Prikladnaâ diskretnaâ matematika, no. 1 (2025), pp. 98-109. http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/