About the maximum number of vertices in primitive regular graphs with exponent equals $3$
Prikladnaâ diskretnaâ matematika, no. 1 (2025), pp. 98-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some results on the maximum number of vertices in primitive regular graphs with exponent $3$ are presented. We have found upper bound of this number depending on the degree $p: n_p \le p^3-p^2-3p+5$. Also, the exact value of the maximum number of vertices in primitive cubic graphs with exponent $3$ is given: $n_3 = 12$. A computation experiment has been conducted, and we have found the number of primitive regular graphs with degree $p \le 9$, number of vertices $n \le 16$ and exponent $3$ for each $(n,p)$ pair.
Keywords: primitive graph, regular graph, the maximum number of vertices.
@article{PDM_2025_1_a5,
     author = {I. V. Los and M. B. Abrosimov},
     title = {About the maximum number of vertices in primitive regular graphs with exponent equals $3$},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {98--109},
     publisher = {mathdoc},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/}
}
TY  - JOUR
AU  - I. V. Los
AU  - M. B. Abrosimov
TI  - About the maximum number of vertices in primitive regular graphs with exponent equals $3$
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2025
SP  - 98
EP  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/
LA  - ru
ID  - PDM_2025_1_a5
ER  - 
%0 Journal Article
%A I. V. Los
%A M. B. Abrosimov
%T About the maximum number of vertices in primitive regular graphs with exponent equals $3$
%J Prikladnaâ diskretnaâ matematika
%D 2025
%P 98-109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/
%G ru
%F PDM_2025_1_a5
I. V. Los; M. B. Abrosimov. About the maximum number of vertices in primitive regular graphs with exponent equals $3$. Prikladnaâ diskretnaâ matematika, no. 1 (2025), pp. 98-109. http://geodesic.mathdoc.fr/item/PDM_2025_1_a5/

[1] Wielandt H., “Unzerlegbare nicht negative Matrizen”, Math. Zeitschr., 52 (1950), 642–648 (in German) | DOI | MR

[2] Sachkov V. N. and Oshkin I. B., “Exponents of classes of non-negative matrices”, Discrete Math. Appl., 3:4 (1993), 365–375 | DOI | MR

[3] Saliy V. N., “Minimal primitive extensions of oriented graphs”, Prikladnaya Diskretnaya Matematika, 2008, no. 1(1), 116–119 (in Russian)

[4] Fomichev V. M., “The estimates of exponents for primitive graphs”, Prikladnaya Diskretnaya Matematika, 2011, no. 2(11), 101–112 (in Russian)

[5] Fomichev V. M. and Avezova Ya. E., “The exact formula for the exponents of the mixing digraphs of register transformations”, J. Appl. Ind. Math., 2020, no. 14, 308–320 | DOI | MR

[6] Abrosimov M. B., Los' I. V., and Kostin S. V., “Primitive regular graphs with exponent 2 and up to 16 vertices”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 21:2 (2021), 238–245 (in Russian) | MR

[7] Abrosimov M. B., Kostin S. V., and Los' I. V., “The maximum number of vertices of primitive regular graphs of orders 2, 3, 4 with exponent 2”, Prikladnaya Diskretnaya Matematika, 2021, no. 52, 97–104 (in Russian)

[8] Jin M., Lee S. G., and Seol H. G., “Exponents of $r$-regular primitive matrices”, Inform. Center for Math. Sci., 6:2 (2003), 51–57 | MR

[9] Bueno M. I. and Furtado S., “On the exponent of $r$-regular primitive matrices”, ELA. Electronic J. Linear Algebra, 17 (2008), 28–47 | MR

[10] Kim B., Song B., and Hwang W., “Nonnegative primitive matrices with exponent 2”, Linear Algebra Appl., 2005, no. 407, 162–168 | DOI | MR

[11] Hoffman A. J. and Singleton R. R., “Moore graphs with diameter 2 and 3”, IBM J. Research and Development, 4 (1960), 497–504 | DOI | MR

[12] Meringer M., “Fast generation of regular graphs and construction of cages”, J. Graph Theory, 30 (1999), 137–146 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[13] Smart N. P., Cryptography: An Intoduction, McGraw-Hill, 2003, 433 pp.