On the possibility of modifying the KB-256 algorithm from the searching for impossible differentials view point
Prikladnaâ diskretnaâ matematika, no. 1 (2025), pp. 70-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The presence of impossible differentials in a block cipher algorithm can lead to efficient methods for recovering the secret key. A large number of impossible differentials have been found for the KB-256 algorithm. This paper considers the modification of the feedback function to reduce the number of iterations to which they can be extended. A general approach to finding differences with probability 1 is proposed. It is shown that changing the number of summable sub-blocks in the feedback function will not reduce the maximum number of iterations to which an infeasible differential can be extended.
@article{PDM_2025_1_a3,
     author = {A. B. Chuhno},
     title = {On the possibility of modifying the {KB-256} algorithm from the searching for impossible differentials view point},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {70--79},
     publisher = {mathdoc},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2025_1_a3/}
}
TY  - JOUR
AU  - A. B. Chuhno
TI  - On the possibility of modifying the KB-256 algorithm from the searching for impossible differentials view point
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2025
SP  - 70
EP  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2025_1_a3/
LA  - ru
ID  - PDM_2025_1_a3
ER  - 
%0 Journal Article
%A A. B. Chuhno
%T On the possibility of modifying the KB-256 algorithm from the searching for impossible differentials view point
%J Prikladnaâ diskretnaâ matematika
%D 2025
%P 70-79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2025_1_a3/
%G ru
%F PDM_2025_1_a3
A. B. Chuhno. On the possibility of modifying the KB-256 algorithm from the searching for impossible differentials view point. Prikladnaâ diskretnaâ matematika, no. 1 (2025), pp. 70-79. http://geodesic.mathdoc.fr/item/PDM_2025_1_a3/

[1] Biham E., Biryukov A., and Shamir A., “Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials”, LNCS, 1592, 1999, 12–23

[2] Knudsen L., “Deal — a 128-bit block cipher”, Complexity, 258:2 (1998) | MR

[3] Fomichev V. M., Koreneva A. M., Miftakhutdinova A. R., et al., “Evaluation of the maximum performance of block encryption algorithms”, Matematicheskie Voprosy Kriptografii, 10:2 (2019), 181–191 | DOI | MR

[4] Fomichev V. M. and Koreneva A. M., “Encryption performance and security of certain wide block ciphers”, J. Comput. Virol. Hack. Tech., 16 (2020), 197–216 | DOI

[5] Astrakhantsev R., Chuhno A., Dmukh A., et al., “Differences with high probability and impossible differentials for the KB-256 cipher”, J. Comput. Virol. Hack. Tech., 20 (2024), 525–531 | DOI

[6] GOST 34.12-2018. Informatsionnaya tekhnologiya. Kriptograficheskaya zashchita informatsii. Blochnye shifry [GOST 34.12-2018. Information Technology. Cryptographic Protection of Information. Block Ciphers, Standartinform, M., 2018

[7] Guan Ph. and He Y., “Exact results for deterministic cellular automata with additive rules”, J. Stat. Phys., 43 (1986), 463–478 | DOI | MR

[8] Bini D., Del Corso G. M., Manzini G., and Margara L., “Inversion of circulant matrices over $\mathbb{Z}_m$”, LNCS, 1443, 1998, 719–730 | MR