Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2024_4_a9, author = {A. N. Rybalov}, title = {On the generic complexity of the discrete logarithm problem in {Lucas} sequences}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {116--122}, publisher = {mathdoc}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2024_4_a9/} }
A. N. Rybalov. On the generic complexity of the discrete logarithm problem in Lucas sequences. Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 116-122. http://geodesic.mathdoc.fr/item/PDM_2024_4_a9/
[1] Smith P. J. and Lennon M. J. J., “LUC: a new public key system”, Proc. IFIP/Sec'93 (Toronto, Canada, 1993), 103–117 | MR | Zbl
[2] Smith P. and Skinner C., “A public-key cryptosystem and a digital signature system based on the Lucas function analogue to discrete logarithms”, LNCS, 917, 1995, 355–364 | MR
[3] Bleichenbacher D., Bosma W., and Lenstra A., “Some remarks on Lucas-based cryptosystems”, LNCS, 963, 1995, 386–396 | MR | Zbl
[4] Kapovich I., Miasnikov A., Schupp P., and Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[5] Rybalov A. N., “On generic complexity of the quadratic residuosity problem”, Prikladnaya Diskretnaya Matematika, 2015, no. 2(28), 54–58 (In Russian) | MR | Zbl
[6] Rybalov A. N., “On generic complexity of the discrete logarithm problem”, Prikladnaya Diskretnaya Matematika, 2016, no. 3(33), 93–97 (In Russian) | Zbl
[7] Rybalov A. N., “On generic complexity of the problem of finding roots in groups of residues”, Prikladnaya Diskretnaya Matematika, 2017, no. 38, 95–100 (In Russian) | Zbl
[8] Impagliazzo R. and Wigderson A., “P $=$ BPP unless E has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC (El Paso), ACM, 1997, 220–229 | MR
[9] Rosser J. B. and Schoenfeld L., “Approximate formulas for some functions of prime numbers”, Illinois J. Math., 6:1 (1962), 64–94 | DOI | MR | Zbl