Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2024_4_a4, author = {S. V. Spiridonov}, title = {Orthomorphisms of groups with minimal possible pairwise distances}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {45--59}, publisher = {mathdoc}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2024_4_a4/} }
S. V. Spiridonov. Orthomorphisms of groups with minimal possible pairwise distances. Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 45-59. http://geodesic.mathdoc.fr/item/PDM_2024_4_a4/
[1] Johnson D. M., Dulmage A. L., and Mendelsohn N. S., “Orthomorphisms of groups and orthogonal Latin squares. I”, Canad. J. Math., 13 (1961), 356–372 | DOI | MR | Zbl
[2] Mann H. B., “On orthogonal Latin squares”, Bull. Amer. Math. Soc., 50 (1944), 249–257 | DOI | MR | Zbl
[3] Niederreiter H. and Robinson K., “Bol loops of order $pq$”, Math. Proc. Cambr. Phil. Soc., 89 (1981), 241–256 | DOI | MR | Zbl
[4] Niederreiter H. and Robinson K., “Complete mappings of finite fields”, J. Austral. Math. Soc. Ser. A, 33:2 (1982), 197–212 | DOI | MR | Zbl
[5] Menyachikhin A. V., “The limited deficit method and the problem of constructing orthomorphisms and almost orthomorphisms of Abelian groups”, Discrete Math. Appl., 31:5 (2021), 327–343 | DOI | DOI | MR | Zbl
[6] Menyachikhin A. V., “Orthomorphisms of Abelian groups with minimum possible pairwise distances”, Discrete Math. Appl., 30:3 (2020), 177–186 | DOI | MR | Zbl
[7] Sachkov V. N., “Markov chains of iterative transformation systems”, Tr. po Diskr. Matem., 6 (2002), 165–183 (in Russian)
[8] Evans A. B., “Applications of complete mappings and orthomorphisms of finite groups”, Quasigroups Relat. Syst., 23 (2015), 5–30 | MR | Zbl
[9] Evans A. B., Orthomorphism Graphs of Groups, Lecture Notes in Math, 1535, Springer, Berlin, 1992 | DOI | MR | Zbl
[10] Zubov A. Yu., Mathematics of Authentication Codes, Gelios ARV Publ., M., 2007, 480 pp.
[11] Cheremushkin A. V., Cryptographic Protocols. Basic Properties and Vulnerabilities, Akademiya Publ., M., 2009, 272 pp.
[12] Trishin A. E., “A method for constructing orthogonal Latin squares based on wildcard binomials of finite fields”, Obozr. Prikl. i Promyshl. Matem., 15:4 (2008), 764–765 (in Russian)
[13] Tuzhilin M. E., “Latin squares and their applications in cryptography”, Prikladnaya Diskretnaya Matematika, 2012, no. 3(17), 47–52 (in Russian) | Zbl
[14] Denes J. and Keedwell A. D., Latin Squares and their Applications, Academiai Kiado, Budapest, 2015, 545 pp. | MR
[15] Glukhov M. M., “On a method of construction of orthogonal quasigroup systems by means of groups”, Mat. Vopr. Kriptogr., 2:4 (2011), 5–24 (in Russian) | DOI | Zbl
[16] Glukhov M. M., “Some applications of quasigroups in cryptography”, Prikladnaya Diskretnaya Matematika, 2008, no. 2(2), 28–32 (in Russian) | Zbl
[17] Pogorelov B. A. and Pudovkina M. A., “Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2019, no. 12, 24–27 (in Russian)
[18] Pogorelov B. A. and Pudovkina M. A., “Classes of piecewise-quasiaffine transformations on the generalized 2-group of quaternions”, Discrete Math. Appl., 33:5 (2023), 299–316 | DOI | MR | Zbl
[19] Pogorelov B. A. and Pudovkina M. A., “Classes of piecewise quasiaffine transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups”, Discrete Math. Appl., 34:1 (2024), 15–27 | DOI | MR | Zbl
[20] Menyachikhin A. V., “Spectral-linear and spectral-differntial methods for generating S-boxes having almost optimal cryptographic parameters”, Mat. Vopr. Kriptogr., 8:2 (2017), 97–116 | DOI | MR | Zbl
[21] Menyachikhin A. V., “The change in linear and differential characteristics of substitution after the multiplication by transposition”, Mat. Vopr. Kriptogr., 11:2 (2020), 111–123 | DOI | MR | Zbl