Orthomorphisms of groups with minimal possible pairwise distances
Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 45-59

Voir la notice de l'article provenant de la source Math-Net.Ru

Orthomorphisms of groups, which are at the minimum possible distance from each other according to the Cayley metric are studied. A class of transformations is described that map an arbitrary given orthomorphism into the set of all orthomorphisms that are at the minimum possible Cayley distance of two from the original. Using the spectral-difference method for constructing substitutions over the generalized quaternion group $Q_{4 n}$, where $4n = 2^t$ $(t=4,\ldots,8)$, orthomorphisms with values of difference characteristics close to optimal have been found.
Keywords: orthomorphism, Latin square, orthogonal Latin squares, Cayley metric, s-box, nonlinear transformation, generalized quaternion group.
Mots-clés : substitution
@article{PDM_2024_4_a4,
     author = {S. V. Spiridonov},
     title = {Orthomorphisms of groups with minimal possible pairwise distances},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {45--59},
     publisher = {mathdoc},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2024_4_a4/}
}
TY  - JOUR
AU  - S. V. Spiridonov
TI  - Orthomorphisms of groups with minimal possible pairwise distances
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2024
SP  - 45
EP  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2024_4_a4/
LA  - ru
ID  - PDM_2024_4_a4
ER  - 
%0 Journal Article
%A S. V. Spiridonov
%T Orthomorphisms of groups with minimal possible pairwise distances
%J Prikladnaâ diskretnaâ matematika
%D 2024
%P 45-59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2024_4_a4/
%G ru
%F PDM_2024_4_a4
S. V. Spiridonov. Orthomorphisms of groups with minimal possible pairwise distances. Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 45-59. http://geodesic.mathdoc.fr/item/PDM_2024_4_a4/