Orthomorphisms of groups with minimal possible pairwise distances
Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 45-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Orthomorphisms of groups, which are at the minimum possible distance from each other according to the Cayley metric are studied. A class of transformations is described that map an arbitrary given orthomorphism into the set of all orthomorphisms that are at the minimum possible Cayley distance of two from the original. Using the spectral-difference method for constructing substitutions over the generalized quaternion group $Q_{4 n}$, where $4n = 2^t$ $(t=4,\ldots,8)$, orthomorphisms with values of difference characteristics close to optimal have been found.
Keywords: orthomorphism, Latin square, orthogonal Latin squares, Cayley metric, s-box, nonlinear transformation, generalized quaternion group.
Mots-clés : substitution
@article{PDM_2024_4_a4,
     author = {S. V. Spiridonov},
     title = {Orthomorphisms of groups with minimal possible pairwise distances},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {45--59},
     publisher = {mathdoc},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2024_4_a4/}
}
TY  - JOUR
AU  - S. V. Spiridonov
TI  - Orthomorphisms of groups with minimal possible pairwise distances
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2024
SP  - 45
EP  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2024_4_a4/
LA  - ru
ID  - PDM_2024_4_a4
ER  - 
%0 Journal Article
%A S. V. Spiridonov
%T Orthomorphisms of groups with minimal possible pairwise distances
%J Prikladnaâ diskretnaâ matematika
%D 2024
%P 45-59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2024_4_a4/
%G ru
%F PDM_2024_4_a4
S. V. Spiridonov. Orthomorphisms of groups with minimal possible pairwise distances. Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 45-59. http://geodesic.mathdoc.fr/item/PDM_2024_4_a4/

[1] Johnson D. M., Dulmage A. L., and Mendelsohn N. S., “Orthomorphisms of groups and orthogonal Latin squares. I”, Canad. J. Math., 13 (1961), 356–372 | DOI | MR | Zbl

[2] Mann H. B., “On orthogonal Latin squares”, Bull. Amer. Math. Soc., 50 (1944), 249–257 | DOI | MR | Zbl

[3] Niederreiter H. and Robinson K., “Bol loops of order $pq$”, Math. Proc. Cambr. Phil. Soc., 89 (1981), 241–256 | DOI | MR | Zbl

[4] Niederreiter H. and Robinson K., “Complete mappings of finite fields”, J. Austral. Math. Soc. Ser. A, 33:2 (1982), 197–212 | DOI | MR | Zbl

[5] Menyachikhin A. V., “The limited deficit method and the problem of constructing orthomorphisms and almost orthomorphisms of Abelian groups”, Discrete Math. Appl., 31:5 (2021), 327–343 | DOI | DOI | MR | Zbl

[6] Menyachikhin A. V., “Orthomorphisms of Abelian groups with minimum possible pairwise distances”, Discrete Math. Appl., 30:3 (2020), 177–186 | DOI | MR | Zbl

[7] Sachkov V. N., “Markov chains of iterative transformation systems”, Tr. po Diskr. Matem., 6 (2002), 165–183 (in Russian)

[8] Evans A. B., “Applications of complete mappings and orthomorphisms of finite groups”, Quasigroups Relat. Syst., 23 (2015), 5–30 | MR | Zbl

[9] Evans A. B., Orthomorphism Graphs of Groups, Lecture Notes in Math, 1535, Springer, Berlin, 1992 | DOI | MR | Zbl

[10] Zubov A. Yu., Mathematics of Authentication Codes, Gelios ARV Publ., M., 2007, 480 pp.

[11] Cheremushkin A. V., Cryptographic Protocols. Basic Properties and Vulnerabilities, Akademiya Publ., M., 2009, 272 pp.

[12] Trishin A. E., “A method for constructing orthogonal Latin squares based on wildcard binomials of finite fields”, Obozr. Prikl. i Promyshl. Matem., 15:4 (2008), 764–765 (in Russian)

[13] Tuzhilin M. E., “Latin squares and their applications in cryptography”, Prikladnaya Diskretnaya Matematika, 2012, no. 3(17), 47–52 (in Russian) | Zbl

[14] Denes J. and Keedwell A. D., Latin Squares and their Applications, Academiai Kiado, Budapest, 2015, 545 pp. | MR

[15] Glukhov M. M., “On a method of construction of orthogonal quasigroup systems by means of groups”, Mat. Vopr. Kriptogr., 2:4 (2011), 5–24 (in Russian) | DOI | Zbl

[16] Glukhov M. M., “Some applications of quasigroups in cryptography”, Prikladnaya Diskretnaya Matematika, 2008, no. 2(2), 28–32 (in Russian) | Zbl

[17] Pogorelov B. A. and Pudovkina M. A., “Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2019, no. 12, 24–27 (in Russian)

[18] Pogorelov B. A. and Pudovkina M. A., “Classes of piecewise-quasiaffine transformations on the generalized 2-group of quaternions”, Discrete Math. Appl., 33:5 (2023), 299–316 | DOI | MR | Zbl

[19] Pogorelov B. A. and Pudovkina M. A., “Classes of piecewise quasiaffine transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups”, Discrete Math. Appl., 34:1 (2024), 15–27 | DOI | MR | Zbl

[20] Menyachikhin A. V., “Spectral-linear and spectral-differntial methods for generating S-boxes having almost optimal cryptographic parameters”, Mat. Vopr. Kriptogr., 8:2 (2017), 97–116 | DOI | MR | Zbl

[21] Menyachikhin A. V., “The change in linear and differential characteristics of substitution after the multiplication by transposition”, Mat. Vopr. Kriptogr., 11:2 (2020), 111–123 | DOI | MR | Zbl