Multiplicative residue semigroups with~planar~Cayley~graphs
Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 36-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study multiplicative residue semigroups that admit planar Cayley graphs. It is proved that the multiplicative semigroup of the residue ring $\mathbb{Z}_n$ admits a planar Cayley graph if and only if $n=4,6,8$ or $n$ is a prime number. Examples of minimal systems of generators of multiplicative residue semigroups with respect to some modules and their Cayley graphs are given, illustrating the obtained results.
Mots-clés : residue
Keywords: multiplicative semigroup of residues, generating semigroup set, Cayley graph of semigroup, planar graph.
@article{PDM_2024_4_a3,
     author = {O. V. Knyazev and D. V. Solomatin},
     title = {Multiplicative residue semigroups {with~planar~Cayley~graphs}},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {36--44},
     publisher = {mathdoc},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2024_4_a3/}
}
TY  - JOUR
AU  - O. V. Knyazev
AU  - D. V. Solomatin
TI  - Multiplicative residue semigroups with~planar~Cayley~graphs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2024
SP  - 36
EP  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2024_4_a3/
LA  - ru
ID  - PDM_2024_4_a3
ER  - 
%0 Journal Article
%A O. V. Knyazev
%A D. V. Solomatin
%T Multiplicative residue semigroups with~planar~Cayley~graphs
%J Prikladnaâ diskretnaâ matematika
%D 2024
%P 36-44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2024_4_a3/
%G ru
%F PDM_2024_4_a3
O. V. Knyazev; D. V. Solomatin. Multiplicative residue semigroups with~planar~Cayley~graphs. Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 36-44. http://geodesic.mathdoc.fr/item/PDM_2024_4_a3/

[1] Hopcroft J. E. and Wong J. K., “Linear time algorithm for isomorphism of planar graphs”, Preliminary Report, Proc. STOC'74 (Seattle, Washington, USA), 1974, 172–184 | MR | Zbl

[2] Kelarev A. V., “Labelled Cayley graphs and minimal automata”, Australas. J. Comb., 30 (2004), 95–102 | MR

[3] Kelarev A., Ryan J., and Yearwood J., “Cayley graphs as classifiers for data mining: the influence of asymmetries”, Discrete Math., 309:17 (2009), 5360–5369 | DOI | MR | Zbl

[4] Zhu Y., “Generalized Cayley graphs of semigroups I”, Semigroup Forum, 84 (2012), 131–143 | DOI | MR | Zbl

[5] Martynov L. M. and Solomatin D. V., “Semigroups of residues with cyclic groups of invertible elements admitting planar Cayley graphs”, Herald of Omsk University, 2 (2012), 57–62 (In Russian)

[6] Scientific Algebraic Seminar of Omsk State Pedagogical University, , 2024 https://school.omgpu.ru/course/view.php?id=2219

[7] Belenkova Zh. T. and Roman'kov V. A., Plane Cayley Graphs of Finite Groups, Preprint, OmSU, Omsk, 1997, 8 pp. (In Russian)

[8] Maschke H., “The representation of finite groups, especially of the rotation groups of the regular bodies of three- and four-dimensional space, by Cayley's color diagrams”, Amer. J. Math., 18:2 (1896), 156–194 | DOI | MR

[9] Solomatin D. V., “Direct products of cyclic monoids admitting outerplanar Cayley graphs and their generalizations”, Herald of Tver State University, Ser. Appl. Math., 2023, no. 4, 43–56 (In Russian)

[10] Solomatin D. V., “Semigroups with outerplanar Cayley graphs”, Sib. Elektron. Mat. Izv., 8 (2011), 191–212 (In Russian) | MR