Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2024_4_a1, author = {A. V. Ilev}, title = {Axiomatizability and decidability of universal theories of hereditary classes of models of finite and infinite languages}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {14--29}, publisher = {mathdoc}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2024_4_a1/} }
TY - JOUR AU - A. V. Ilev TI - Axiomatizability and decidability of universal theories of hereditary classes of models of finite and infinite languages JO - Prikladnaâ diskretnaâ matematika PY - 2024 SP - 14 EP - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2024_4_a1/ LA - ru ID - PDM_2024_4_a1 ER -
A. V. Ilev. Axiomatizability and decidability of universal theories of hereditary classes of models of finite and infinite languages. Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 14-29. http://geodesic.mathdoc.fr/item/PDM_2024_4_a1/
[1] Il'ev A. V. and Il'ev V. P., “Algorithms for solving systems of equations over various classes of finite graphs”, Prikladnaya Diskretnaya Matematika, 2021, no. 53, 89–102 (In Russian) | Zbl
[2] Nikitin A. Yu. and Rybalov A. N., “On complexity of the satisfiability problem of systems over finite posets”, Prikladnaya Diskretnaya Matematika, 2018, no. 39, 94–98 (In Russian) | Zbl
[3] Baldzhanova R. V., Il'ev A. V., and Il'ev V. P., “On the complexity of graph clustering in the problem with bounded cluster sizes”, Prikladnaya Diskretnaya Matematika, 2023, no. 60, 76–84 (In Russian) | MR | Zbl
[4] Il'ev A. V. and Il'ev V. P., “Bounds for the clustering complexity in a graph clustering problem with clusters of bounded size”, J. Math. Sci., 275 (2023), 78–84 | DOI | MR | Zbl
[5] Zykov A. A., Fundamentals of Graph Theory, Vuzovskaia kniga, M., 2004, 664 pp. (In Russian)
[6] Ershov Yu. L., Lavrov I. A., Taimanov A. D., and Taitslin M. A., “Elementary theories”, Russian Math. Surveys, 20:4 (1965), 35–105 | DOI | MR | Zbl
[7] Bozapalidis A. and Kalampakas A., “An axiomatization of graphs”, Acta Inform., 41 (2004), 19–61 | DOI | MR | Zbl
[8] Taylor W., “Atomic compactness and graph theory”, Fundamenta Mathematicae, LXV (1969), 139–145 | DOI | MR | Zbl
[9] Yamamoto M., Nishizaki S., Hagiya M., and Toda Y., “Formalization of planar graphs”, LNCS, 971, 1995, 369–384 | MR | Zbl
[10] Caicedo X., “Finitely axiomatizable quasivarieties of graphs”, Algebra Univers., 34:2 (1995), 314–321 | DOI | MR | Zbl
[11] Il'ev A. V., “On axiomatizability of hereditary classes of graphs and matroids”, Siberian Electronic Math. Reports, 13 (2016), 137–147 (In Russian) | Zbl
[12] Ham L. and Jackson M., “Axiomatisability and hardness for universal Horn classes of hypergraphs”, Algebra Univers., 79 (2018), 30 | DOI | MR | Zbl
[13] Il'ev A. V. and Il'ev V. P., “On axiomatizability and decidability of universal theories of hereditary classes of matroids”, J. Physics: Conf. Ser., 1210 (2019), 012056 | DOI
[14] Stronkowski M. M., “Axiomatizations of universal classes through infinitary logic”, Algebra Univers., 79 (2018), 26 | DOI | MR | Zbl
[15] Ershov Yu. L. and Palyutin E. A., Mathematical Logic, Nauka, M., 1987, 336 pp. (In Russian) | MR
[16] Gorbunov V. A., Algebraic Theory of Quasivarieties, Plenum, New York, 1998, 298+xii pp. | MR
[17] Il'ev A. V., “Decidability of universal theories and axiomatizability of hereditary classes of graphs”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 22, no. 1, 2016, 100–111 (In Russian)