Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2024_3_a4, author = {A. A. Kuninets and E. S. Malygina}, title = {Construction of quasi-cyclic alternant codes and~their application in code-based cryptography}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {84--109}, publisher = {mathdoc}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2024_3_a4/} }
TY - JOUR AU - A. A. Kuninets AU - E. S. Malygina TI - Construction of quasi-cyclic alternant codes and~their application in code-based cryptography JO - Prikladnaâ diskretnaâ matematika PY - 2024 SP - 84 EP - 109 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2024_3_a4/ LA - ru ID - PDM_2024_3_a4 ER -
A. A. Kuninets; E. S. Malygina. Construction of quasi-cyclic alternant codes and~their application in code-based cryptography. Prikladnaâ diskretnaâ matematika, no. 3 (2024), pp. 84-109. http://geodesic.mathdoc.fr/item/PDM_2024_3_a4/
[1] Barelli E., On the Security of Some Compact Keys for McEliece Scheme, 2018, arXiv: 1803.05289
[2] Kuninets A. A. and Malygina E. S., “Calculation of error-correcting pairs for an algebraic-geometric code”, Prikladnaya Diskretnaya Matematika, 2024, no. 63, 65–90 (in Russian) | MR | Zbl
[3] Malygina E. S., Kuninets A. A., Ratochka V. L., et al., “Algebraic-geometry codes and decoding by error-correcting pairs”, Prikladnaya Diskretnaya Matematika, 2023, no. 62, 83–105 (in Russian) | MR
[4] Stichtenoth H., Algebraic Function Fields and Codes, Springer Verlag, 1991 | MR
[5] Stichtenoth H., “On automorphisms of geometric Goppa codes”, J. Algebra, 130:1 (1990), 113–121 | DOI | MR | Zbl
[6] Conrad K., The Minimal Polynomial and some Applications, , 2008 https://kconrad.math.uconn.edu/blurbs/linmultialg/minpolyandappns.pdf
[7] Clark P. L., Linear Algebra: Invariant Subspaces, 2013 http://alpha.math.uga.edu/p̃ete/invariant_subspaces.pdf
[8] Faugére J.-C., Otmani A., Perret L., et al., “Folding alternant and Goppa codes with non-trivial automorphism groups”, IEEE Trans. Inform. Theory, 62:1 (2016), 184–121 | DOI | MR