On the influence of probabilistic characteristics of~discrete sources forming cryptographic keys on~the~practical secrecy of the key
Prikladnaâ diskretnaâ matematika, no. 3 (2024), pp. 66-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of a binary discrete source is proposed, which is close to the practical conditions for the operation of cryptographic key generation devices. The model takes into account the non-stationarity of such devices, as well as the presence of statistical dependencies between their output bits. Within the framework of the model, an achievable and easily computable lower estimate of the practical secrecy of the key is obtained. It is shown that with certain parameters of the model, the assessment allows us to draw meaningful conclusions about the cryptographic quality of keys, while other well-known estimates do not cope with this.
Keywords: the practical secrecy of the key, algorithm of testing to success, truncated algorithm of testing.
@article{PDM_2024_3_a3,
     author = {A. S. Logachev and V. O. Mironkin},
     title = {On the influence of probabilistic characteristics of~discrete sources forming cryptographic keys on~the~practical secrecy of the key},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {66--83},
     publisher = {mathdoc},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2024_3_a3/}
}
TY  - JOUR
AU  - A. S. Logachev
AU  - V. O. Mironkin
TI  - On the influence of probabilistic characteristics of~discrete sources forming cryptographic keys on~the~practical secrecy of the key
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2024
SP  - 66
EP  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2024_3_a3/
LA  - ru
ID  - PDM_2024_3_a3
ER  - 
%0 Journal Article
%A A. S. Logachev
%A V. O. Mironkin
%T On the influence of probabilistic characteristics of~discrete sources forming cryptographic keys on~the~practical secrecy of the key
%J Prikladnaâ diskretnaâ matematika
%D 2024
%P 66-83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2024_3_a3/
%G ru
%F PDM_2024_3_a3
A. S. Logachev; V. O. Mironkin. On the influence of probabilistic characteristics of~discrete sources forming cryptographic keys on~the~practical secrecy of the key. Prikladnaâ diskretnaâ matematika, no. 3 (2024), pp. 66-83. http://geodesic.mathdoc.fr/item/PDM_2024_3_a3/

[1] Kahn D., The Codebreakers: the Story of Secret Writing, Scribner, N.Y., 1996, 1181 pp.

[2] Schneier B., Applied Cryptography: Protocols, Algorithms, and Source Code in C, John Wiley Sons, 1996 | MR

[3] Arbekov I. M., Elementary Quantum Cryptography: For Cryptographers who are not Familiar with Quantum Mechanics, URSS Publ., M., 2022, 168 pp. (in Russian)

[4] Turam M., Barker E., Kelsey J., and McKay K., Recommendation for the Entropy Sources Used for Random Bit Generation, NIST Special Publ. 800-90B, 2018, 76 pp.

[5] Arbekov I. M., “Key secrecy criteria”, Matem. Vopr. Kriptogr., 7:1 (2016), 39–56 (in Russian) | DOI | MR | Zbl

[6] Arbekov I. M., “Lower bounds for the practical secrecy of a key”, Matem. Vopr. Kriptogr., 8:2 (2017), 29–38 | DOI | MR | Zbl

[7] Los A. B. and Mironkin V. O., Information-Theoretical Aspects of Information Security, URSS Publ., M., 2023, 144 pp. (in Russian)

[8] Los A. B., Nesterenko A. Yu., and Rogacheva O. A., “On the effect of the nonprobability of the output sequence on the quality of cryptographic transformations”, Algebra, teoriya chisel, diskretnaya geometriya i mnogomasshtabnoe modelirovanie: Sovremennye problemy, prilozheniya i problemy istorii, Materialy XXII Mezhdunar. konf., posvyashchennoy 120-letiyu so dnya rozhdeniya akademika A. N. Kolmogorova i 60-letiyu so dnya otkrytiya shkoly-internata No 18 pri Moskovskom universitete, TGPU im. L. N. Tolstogo, Tula, 2023, 151–157 (in Russian)

[9] Feller W., An Introduction to Probability Theory and its Applications, v. I, John Wiley Sons, 1957 | MR | MR | Zbl

[10] Karpov A. A., Mironkin V. O., and Mikhaylov M. M., “On the entropy characteristics of a sequential procedure for testing elements of a polynomial scheme”, Obozr. Prikl. i Promyshl. Matem., 28:1 (2021), 9–12 (in Russian)

[11] Kel'bert M. Ya. and Sukhov Yu. M., Probability and Statistics in Examples and Problems, v. I, Basic Concepts of Probability Theory and Mathematical Statistics, 2nd ed., MCCME Publ., M., 2010, 486 pp. (in Russian)