Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2024_3_a1, author = {A. V. Cheremushkin}, title = {Medial and paramedial general identities for strong dependance operations}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {21--40}, publisher = {mathdoc}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2024_3_a1/} }
A. V. Cheremushkin. Medial and paramedial general identities for strong dependance operations. Prikladnaâ diskretnaâ matematika, no. 3 (2024), pp. 21-40. http://geodesic.mathdoc.fr/item/PDM_2024_3_a1/
[1] Cheremushkin A. V., “Analogues of Gluskin — Hosszú and Malyshev theorems for strongly dependent $n$-ary operations”, Discrete Math. Appl., 29:5 (2019), 295–302 | DOI | DOI | MR | Zbl
[2] Cheremushkin A. V., “Post's theorem for strongly dependent $n$-ary semigroups”, Diskretnaya Matematika, 31:2 (2019), 152–157 (in Russian) | DOI
[3] Cheremushkin A. V., “Partially invertible strongly dependent $n$-ary operations”, Sb. Math., 211:2 (2020), 291–308 | DOI | DOI | MR | Zbl
[4] Toyoda K., “On axioms of linear functions”, Proc. Imp. Acad. Tokyo, 17 (1941), 221–227 | MR | Zbl
[5] Němec P. and Kepka T., “T-quasigroups (Part I)”, Acta Univ. Carolinae. Math. Phis., 1 (1971), 39–49 | MR
[6] Ehsani A., “Representation of the medial-like algebras”, TACL 2013, EPiC Ser., 25, eds. N. Galatos, A. Kurz, and C. Tsinakis, 2013, 64–67 | MR
[7] Cho J. R., Ježek J., and Kepka T., “Paramedial groupoids”, Czechoslovak Math. J., 49:2 (1999), 277–290 | DOI | MR | Zbl
[8] Ehsani A., Movsisyan Y., and Arslanov M., “A representation of paramedial $n$-ary groupoids”, Asian-Europ. J. Math., 7:1 (2014), 1450020-1–1450020-17 | DOI | MR | Zbl
[9] Cheremushkin A. V., “Medial strongly dependent $n$-ary operations”, Discrete Math. Appl., 31:4 (2021), 251–258 | DOI | DOI | MR | MR | Zbl
[10] Cheremushkin A. V., “Paramedial strong dependance $n$-ary operations”, Diskret. Math., 26:3 (2024), 115–126 (in Russian) | DOI
[11] Aczél J., Belousov V. D., and Hossú M., “Generalized associativity and bisymmetry on quasigroups”, Acta Math. Acad. Sci. Hungar., 11:11-2 (1960), 127–136 | MR | Zbl
[12] Nazari E. and Movsisyan Y. M., “Transitive modes”, Demonstratio Math., 44:3 (2011), 511–522 | DOI | MR | Zbl
[13] Ehsani A., “Linear representation of algebras with non-associative operations which are satisfy in the balanced functional equations”, J. Phys. Conf. Ser., 622 (2015), 012037 | DOI
[14] Ehsani A., Krapež A., and Movsisyan Y., “Algebras with parastrophically uncancellable quasigroup equations”, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2016, no. 1, 41–63 | MR | Zbl
[15] Cheremushkin A. V., “Repetition-free decomposition of strongly dependent functions”, Discrete Math. Appl., 14:5 (2004), 439–478 | DOI | DOI | MR | Zbl
[16] Sokhatsky F. and Kirka D., “Canonical decompositions of solutions of functional equation of generalized mediality”, XII Intern. Algebraic Conf., 107–108
[17] Ehsani A., “On medial-like functional equations”, Math. Problems of Computer Sci., 38 (2021), 53–55
[18] Ehsani A. and Movsisyan Y., “Linear representation of medial-like algebras”, Comm. Algebra, 41:9 (2013), 3429–3444 | DOI | MR | Zbl
[19] Ehsani A., Krapež A., and Movsisyan Y., Algebras with Medial-Like Functional Equations on Quasigroups, 2015, arXiv: 1505.06224
[20] Murdoch D. C., “Quasi-groups which satisfy certain generalized associative laws”, Amer. J. Math., 61 (1939), 509–522 | DOI | MR | Zbl
[21] Etherington I. M. H., “Groupoids with additive endomorphisms”, Amer. Math. Monthly, 65:8P1 (1958), 596–601 | DOI | MR | Zbl
[22] Gligoroski D., Entropoid Based Cryptography, IACR Cryptology ePrint Archive 2021/469, , 2021 https://eprint.iacr.org/2021/469