Medial and paramedial general identities for strong dependance operations
Prikladnaâ diskretnaâ matematika, no. 3 (2024), pp. 21-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider general functional medial and paramedial equations with four object variables. We give analogous of khown results with quasigroup operations for a class of strong dependable operations. As a consequence of these results, an analogous linear representation for every operation of a binary algebra satisfying one of these hyperidentities is obtained. Nevertheless, co-medial and co-paramedial algebras may have nonlinear binary operations.
Keywords: $n$-ary quasigroup, strong dependent operation, medial and paramedial operations, linear representation.
@article{PDM_2024_3_a1,
     author = {A. V. Cheremushkin},
     title = {Medial and paramedial general identities for strong dependance operations},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {21--40},
     publisher = {mathdoc},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2024_3_a1/}
}
TY  - JOUR
AU  - A. V. Cheremushkin
TI  - Medial and paramedial general identities for strong dependance operations
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2024
SP  - 21
EP  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2024_3_a1/
LA  - ru
ID  - PDM_2024_3_a1
ER  - 
%0 Journal Article
%A A. V. Cheremushkin
%T Medial and paramedial general identities for strong dependance operations
%J Prikladnaâ diskretnaâ matematika
%D 2024
%P 21-40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2024_3_a1/
%G ru
%F PDM_2024_3_a1
A. V. Cheremushkin. Medial and paramedial general identities for strong dependance operations. Prikladnaâ diskretnaâ matematika, no. 3 (2024), pp. 21-40. http://geodesic.mathdoc.fr/item/PDM_2024_3_a1/

[1] Cheremushkin A. V., “Analogues of Gluskin — Hosszú and Malyshev theorems for strongly dependent $n$-ary operations”, Discrete Math. Appl., 29:5 (2019), 295–302 | DOI | DOI | MR | Zbl

[2] Cheremushkin A. V., “Post's theorem for strongly dependent $n$-ary semigroups”, Diskretnaya Matematika, 31:2 (2019), 152–157 (in Russian) | DOI

[3] Cheremushkin A. V., “Partially invertible strongly dependent $n$-ary operations”, Sb. Math., 211:2 (2020), 291–308 | DOI | DOI | MR | Zbl

[4] Toyoda K., “On axioms of linear functions”, Proc. Imp. Acad. Tokyo, 17 (1941), 221–227 | MR | Zbl

[5] Němec P. and Kepka T., “T-quasigroups (Part I)”, Acta Univ. Carolinae. Math. Phis., 1 (1971), 39–49 | MR

[6] Ehsani A., “Representation of the medial-like algebras”, TACL 2013, EPiC Ser., 25, eds. N. Galatos, A. Kurz, and C. Tsinakis, 2013, 64–67 | MR

[7] Cho J. R., Ježek J., and Kepka T., “Paramedial groupoids”, Czechoslovak Math. J., 49:2 (1999), 277–290 | DOI | MR | Zbl

[8] Ehsani A., Movsisyan Y., and Arslanov M., “A representation of paramedial $n$-ary groupoids”, Asian-Europ. J. Math., 7:1 (2014), 1450020-1–1450020-17 | DOI | MR | Zbl

[9] Cheremushkin A. V., “Medial strongly dependent $n$-ary operations”, Discrete Math. Appl., 31:4 (2021), 251–258 | DOI | DOI | MR | MR | Zbl

[10] Cheremushkin A. V., “Paramedial strong dependance $n$-ary operations”, Diskret. Math., 26:3 (2024), 115–126 (in Russian) | DOI

[11] Aczél J., Belousov V. D., and Hossú M., “Generalized associativity and bisymmetry on quasigroups”, Acta Math. Acad. Sci. Hungar., 11:11-2 (1960), 127–136 | MR | Zbl

[12] Nazari E. and Movsisyan Y. M., “Transitive modes”, Demonstratio Math., 44:3 (2011), 511–522 | DOI | MR | Zbl

[13] Ehsani A., “Linear representation of algebras with non-associative operations which are satisfy in the balanced functional equations”, J. Phys. Conf. Ser., 622 (2015), 012037 | DOI

[14] Ehsani A., Krapež A., and Movsisyan Y., “Algebras with parastrophically uncancellable quasigroup equations”, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2016, no. 1, 41–63 | MR | Zbl

[15] Cheremushkin A. V., “Repetition-free decomposition of strongly dependent functions”, Discrete Math. Appl., 14:5 (2004), 439–478 | DOI | DOI | MR | Zbl

[16] Sokhatsky F. and Kirka D., “Canonical decompositions of solutions of functional equation of generalized mediality”, XII Intern. Algebraic Conf., 107–108

[17] Ehsani A., “On medial-like functional equations”, Math. Problems of Computer Sci., 38 (2021), 53–55

[18] Ehsani A. and Movsisyan Y., “Linear representation of medial-like algebras”, Comm. Algebra, 41:9 (2013), 3429–3444 | DOI | MR | Zbl

[19] Ehsani A., Krapež A., and Movsisyan Y., Algebras with Medial-Like Functional Equations on Quasigroups, 2015, arXiv: 1505.06224

[20] Murdoch D. C., “Quasi-groups which satisfy certain generalized associative laws”, Amer. J. Math., 61 (1939), 509–522 | DOI | MR | Zbl

[21] Etherington I. M. H., “Groupoids with additive endomorphisms”, Amer. Math. Monthly, 65:8P1 (1958), 596–601 | DOI | MR | Zbl

[22] Gligoroski D., Entropoid Based Cryptography, IACR Cryptology ePrint Archive 2021/469, , 2021 https://eprint.iacr.org/2021/469