Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2024_2_a8, author = {A. A. Romanova and V. V. Servakh and V. Yu. Tavchenko}, title = {Makespan minimization in reentrant flow shop problem with identical jobs}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {99--111}, publisher = {mathdoc}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2024_2_a8/} }
TY - JOUR AU - A. A. Romanova AU - V. V. Servakh AU - V. Yu. Tavchenko TI - Makespan minimization in reentrant flow shop problem with identical jobs JO - Prikladnaâ diskretnaâ matematika PY - 2024 SP - 99 EP - 111 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2024_2_a8/ LA - ru ID - PDM_2024_2_a8 ER -
A. A. Romanova; V. V. Servakh; V. Yu. Tavchenko. Makespan minimization in reentrant flow shop problem with identical jobs. Prikladnaâ diskretnaâ matematika, no. 2 (2024), pp. 99-111. http://geodesic.mathdoc.fr/item/PDM_2024_2_a8/
[1] Pinedo M. L., Scheduling. Theory, Algorithms, and Systems, Springer, 2008, 671 pp. | MR | Zbl
[2] Graves S. C., Meal H. M., Stefek D., and Zeghmi A. H., “Scheduling of re-entrant flow shops”, J. Oper. Management, 3:4 (1983), 197–207 | DOI
[3] Emmons H. and Vairaktarakis G., Flow Shop Scheduling: Theoretical Results, Algorithms, and Applications, Springer Science Business Media, 2012, 334 pp. | MR
[4] Shufan E., Grinshpoun T., Ikar E., and Ilani H., “Reentrant flow shop with identical jobs and makespan criterion”, J. Production Res., 61:1 (2021), 183–197 | DOI
[5] Lev V. and Adiri I., “V-shop scheduling”, Europ. J. Oper. Res., 18:1 (1984), 51–56 | DOI | MR | Zbl
[6] Pan J. C.-H. and Chen J.-S., “Minimizing makespan in re-entrant permutation flow-shops”, J. Oper. Res. Soc., 54:6 (2003), 642–653 | DOI | Zbl
[7] Chen J.-S., “A branch and bound procedure for the reentrant permutation flowshop scheduling problem”, Intern. J. Adv. Manufacturing Technology, 29 (2006), 1186–1193 | DOI
[8] Wang M. Y., Suresh P. S., and van de Velde S. L., “Minimizing makespan in a class of reentrant shops”, Oper. Res., 45:5 (1997), 702–712 | DOI | Zbl
[9] Kubiak W., Lou Sh. X. C., and Wang Y., “Mean flow time minimization in reentrant job shops with a hub”, Oper. Res., 44:5 (1996), 743–753 | DOI
[10] Xie X., Tang L., and Li Y., “Scheduling of a hub reentrant job shop to minimize makespan”, Intern. J. Adv. Manufacturing Technology, 56 (2011), 743–753 | DOI
[11] Middendorf M. and Timkovsky V. G., “On scheduling cycle shops: Classification, complexity and approximation”, J. Scheduling, 5:2 (2002), 135–169 | DOI | MR | Zbl
[12] Timkovsky V. G., “Cycle Shop Scheduling”, Handbook of Scheduling, Ch. 7, ed. Leung J. Y.-T., CRC Press, Boca Raton–London–N.Y.–Washington, 2004 | MR
[13] Yu T.-S. and Pinedo M. L., “Flow shops with reentry: Reversibility properties and makespan optimal schedules”, Europ. J. Oper. Res., 282:2 (2021), 478–490 | MR
[14] Kats V. and Levner E., “Minimizing the number of robots to meet a given cyclic schedule”, Ann. Oper. Res., 69 (1997), 209–226 | DOI | MR | Zbl
[15] Kats V. and Levner E., “Cyclic scheduling in a robotic production line”, J. Scheduling, 5:1 (2002), 23–41 | DOI | MR | Zbl
[16] Boudoukh T., Penn M., and Weiss G., “Scheduling jobshops with some identical or similar jobs”, J. Scheduling, 4:4 (2001), 177–199 | DOI | MR | Zbl
[17] Mezhetskaya M. A. and Servakh V. V., “The shop scheduling problems with complex technological route”, Sovremennye Problemy Nauki i Obrazovaniya, 2013, no. 1 (in Russian) https://science-education.ru/ru/article/view?id=8407
[18] Sotskov Y. N. and Shakhlevich N. V., “NP-hardness of shop-scheduling problems with three jobs”, Discrete Appl. Math., 59:3 (1995), 237–266 | DOI | MR | Zbl
[19] Servakh V. V. and Shcherbinina T. A., “A fully polynomial time approximation scheme for two project scheduling problems”, IFAC Proc. Volumes, 39:3 (2006), 131–135 | DOI
[20] Servakh V. V., “An efficiently solvable case of the scheduling problem with renewable resources”, Diskretnyy Analiz i Issledovaniye Operatsiy, Ser. 2, 7:1 (2000), 75–82 (in Russian) | MR | Zbl
[21] Middendorf M. and Timkovsky V. G., “Transversal graphs for partially ordered sets: Sequencing, merging and scheduling problems”, J. Combin. Optimization, 3:4 (1999), 417–435 | DOI | MR | Zbl
[22] Romanova A. A. and Servakh V. V., “Optimization of identical jobs production on the base of cyclic schedules”, J. Appl. Industr. Math., 3:4 (2009), 496–504 | DOI | MR
[23] Bobrova E. A., Romanova A. A., and Servakh V. V., “Complexity of cyclic scheduling for identical jobs”, Diskretnyy Analiz i Issledovaniye Operatsiy, 20:4 (2013), 3–14 (in Russian) | MR | Zbl