Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2024_2_a6, author = {A. N. Rybalov}, title = {On the generic complexity of solving equations over~natural numbers with addition}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {72--78}, publisher = {mathdoc}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2024_2_a6/} }
A. N. Rybalov. On the generic complexity of solving equations over~natural numbers with addition. Prikladnaâ diskretnaâ matematika, no. 2 (2024), pp. 72-78. http://geodesic.mathdoc.fr/item/PDM_2024_2_a6/
[1] Kapovich I., Miasnikov A., Schupp P., and Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[2] Gilman R. H., Myasnikov A., and Roman'kov V., “Random equations in free groups”, Groups Complexity Cryptology, 3:2 (2011), 257–284 | DOI | MR | Zbl
[3] Gilman R. H., Myasnikov A., and Roman'kov V., “Random equations in nilpotent groups”, J. Algebra, 352:1 (2012), 192–214 | DOI | MR | Zbl
[4] Rybalov A., “Generic complexity of the Diophantine problem”, Groups Complexity Cryptology, 5:1 (2013), 25–30 | DOI | MR | Zbl
[5] Rybalov A. and Shevlyakov A., “Generic complexity of solving of equations in finite groups, semigroups and fields”, J. Physics: Conf. Ser., 1901 (2021), 012047, 8 pp. | DOI
[6] Shevlyakov A., “Algebraic geometry over the additive monoid of natural numbers: The classifcation of coordinate monoids”, Groups Complexity Cryptology, 2:1 (2010), 91–111 | DOI | MR | Zbl
[7] Shevlyakov A. N., “Algebraic geometry over the monoid of natural numbers. Irreducible algebraic sets”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 16, no. 2, 2010, 258–269 (in Russian)
[8] Kryvyi S. L., “Compatibility of systems of linear constraints over the set of natural numbers”, Cybernetics Systems Analysis, 38:1 (2002), 17–29 | DOI | MR | Zbl
[9] Kitaev A., Shen' A., and Vyalyy M., Classical and Quantum Computations, MCCME Publ., M., 1999, 192 pp. (in Russian)
[10] Schrijver A., Theory of Linear and Integer Programming, Wiley, 1998, 484 pp. | MR | MR | Zbl