Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2024_2_a5, author = {E. A. Monakhova and O. G. Monakhov}, title = {Database analysis of optimal double-loop networks}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {56--71}, publisher = {mathdoc}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2024_2_a5/} }
E. A. Monakhova; O. G. Monakhov. Database analysis of optimal double-loop networks. Prikladnaâ diskretnaâ matematika, no. 2 (2024), pp. 56-71. http://geodesic.mathdoc.fr/item/PDM_2024_2_a5/
[1] Bermond J.-C., Comellas F., and Hsu D. F., “Distributed loop computer networks: a survey”, J. Parallel Distrib. Comput., 24:1 (1995), 2–10 | DOI
[2] Hwang F. K., “A survey on multi-loop networks”, Theoret. Comput. Sci., 299 (2003), 107–121 | DOI | MR | Zbl
[3] Monakhova E. A., “Structural and communicative properties of circulant networks”, Prikladnaya Diskretnaya Matematika, 2011, no. 3, 92–115 (in Russian)
[4] Huang X., Ramos A. F., and Deng Y., “Optimal circulant graphs as low-latency network topologies”, J. Supercomput., 78 (2022), 13491–13510 | DOI
[5] Chen B.-X., Meng J.-X., and Xiao W.-J., “Some new optimal and suboptimal infinite families of undirected double-loop networks”, Discrete Math. Theor. Comput. Sci., 8 (2006), 299–311 | DOI | MR | Zbl
[6] Romanov A. Y., “Development of routing algorithms in networks-on-chip based on ring circulant topologies”, Heliyon, 5:4 (2019), e01516 | DOI
[7] Chen B.-X., Xiao W.-J., and Parhami B., “Diameter formulas for a class of undirected double-loop networks”, Networks., 6:1 (2005), 1–15 | MR
[8] Jha K. P., “Tight-optimal circulants vis-a-vis twisted tori”, Discrete Appl. Math., 175 (2014), 24–34 | DOI | MR | Zbl
[9] Huanping L. and Yixian Y.-J., “On the fault-tolerant routing in distributed loop networks”, J. Electronics, 17 (2000), 84–89
[10] Bian Q.-F., Hang T., Liu H., and Fang M., “Research on the diameter and average diameter of undirected double-loop networks”, Int. Conf. Grid Cloud Computing (Nanjang, Jiangsu China), 2010, 461–466 | MR
[11] Martinez C., Beivide R., Stafford E., et al., “Modeling toroidal networks with the Gaussian integers”, IEEE Trans. Comput., 57:8 (2008), 1046–1056 | DOI | MR | Zbl
[12] Monakhova E. A., Monakhov O. G., and Romanov A. Yu., “Routing algorithms in optimal degree four circulant networks based on relative addressing: Comparative analysis for networks-on-chip”, IEEE Trans. Netw. Sci. Eng., 10:1 (2023), 413–425 | DOI | MR
[13] Perez-Roses H., Bras-Amoros M., and Seradilla-Merinero J. M., “Greedy routing in circulant networks”, Graphs Combinatorics, 38 (2022), 86 | DOI | MR | Zbl
[14] Lewis R. R., Analysis and Construction of Extremal Circulant and Other Abelian Cayley Graphs, Ph.D. Thesis, The Open University, London, UK, 2022
[15] Pai K.-J., Yang J.-S., Chen G.-Y., and Chang J.-M., “Configuring protection routing via completely independent spanning trees in dense Gaussian on-chip networks”, IEEE Trans. Netw. Sci. Eng., 9:2 (2022), 932–946 | DOI | MR
[16] Monakhov O. G., Monakhova E. A., Romanov A. Y., et al., “Adaptive dynamic shortest path search algorithm in networks-on-chip based on circulant topologies”, IEEE Access, 9 (2021), 160836–160846 | DOI
[17] Monakhova E. A., “On analytical representation of optimal two-dimensional Diophantine structures of homogeneous computer systems”, Vychislitel'nye Sistemy, 1981, no. 90, 81–91 (in Russian) | MR | Zbl
[18] Boesch F. and Wang J.-F., “Reliable circulant networks with minimum transmission delay”, IEEE Trans. Circuits Syst., 32:12 (1985), 1286–1291 | DOI | MR | Zbl
[19] Tzvieli D., “Minimal diameter double-loop networks. 1. Large infinite optimal families”, Networks, 21 (1991), 387–415 | DOI | MR | Zbl
[20] Liu H., Li X., and Wang S., “Construction of dual optimal bidirectional double-loop networks for optimal routing”, Mathematics, 10 (2022), 4016 | DOI
[21] Monakhova E. A., Romanov A. Y., and Lezhnev E. V., “Shortest path search algorithm in optimal two-dimensional circulant networks: Implementation for networks-on-chip”, IEEE Access, 8 (2020), 215010–215019 | DOI | MR
[22] Monakhova E. A., “Synthesis of optimal Diophantine structures”, Vychislitel'nye Sistemy, 1979, no. 80, 18–35 (in Russian) | Zbl
[23] Du D.-Z., Hsu D. F., Li Q., and Xu J., “A combinatorial problem related to distributed loop networks”, Networks, 20 (1990), 173–180 | DOI | MR | Zbl
[24] Li Y., Chen Y., Tai W., and Wang R., “The minimum distance diagram and diameter of undirected double-loop networks”, Proc. ICMEMTC (Taiyuan, China), 2016, 1682–1687
[25] Loudiki L., Kchikech M., and Essaky E. H., A New Approach for Computing the Distance and the Diameter in Circulant Graphs, 2022, arXiv: 2210.11116
[26] Jha P. K., “Dense bipartite circulants and their routing via rectangular twisted torus”, Discrete Appl. Math., 166 (2014), 141–158 | DOI | MR | Zbl
[27] Jha P. K. and Smith J. D. H., “Cycle Kronecker products that are representable as optimal circulants”, Discrete Appl. Math., 181 (2015), 130–138 | DOI | MR | Zbl
[28] Liu H., Yang Y., and Hu M., “Tight optimal infinite families of undirected double-loop networks”, Systems Eng. Theory Practice, 1 (2002), 75–79 | MR
[29] Jha P. K., “Dimension-order routing algorithms for a family of minimal-diameter circulants”, J. Interconn. Networks, 14:1 (2013), 1350002, 24 pp. | DOI
[30] Bermond J.-C. and Tzvieli D., “Minimal diameter double-loop networks: Dense optimal families”, Networks, 21 (1991), 1–9 | DOI | MR | Zbl
[31] Chen B.-X., Meng J.-X., and Xiao W.-J., “A constant time optimal routing algorithm for undirected double-loop networks”, LNCS, 3794, 2005, 308–316 | MR
[32] Monakhova E. A., “Optimal circulant computer networks”, Proc. PaCT'91 (Novosibirsk, USSR), 1991, 450–458
[33] Monakhova E. A. and Monakhov O. G., “Evolutionary synthesis of families of optimal two-dimensional circulant networks”, Vestnik SibSUTIS, 2014, no. 2, 72–81 (in Russian)
[34] Zerovnik J. and Pisanski T., “Computing the diameter in multiple-loop networks”, J. Algorithms, 14 (1993), 226–243 | DOI | MR | Zbl
[35] Romanov A., “The dataset for optimal circulant topologies”, Big Data Cogn. Comput., 7 (2023), 80 pp. | Zbl
[36] Monakhova E. A. and Monakhov O. G., “Generation and analysis of optimal double-loop circulant networks dataset”, SibDATA, Proc. CEUR Workshop, 2023 (to appear) | Zbl
[37] Storn R. and Price K., “Differential evolution — A simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optimization, 11 (1997), 341–359 | DOI | MR | Zbl
[38] Zaheer H., Pant M., Monakhov O., and Monakhova E., “Simple and efficient co-operative approach for solving multi modal problems”, Proc. ICEEOT (Chennai, Tamilnadu, India), 2016, 731–737