Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2024_1_a7, author = {A. N. Rybalov}, title = {Generically undecidable and hard problems}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {109--116}, publisher = {mathdoc}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2024_1_a7/} }
A. N. Rybalov. Generically undecidable and hard problems. Prikladnaâ diskretnaâ matematika, no. 1 (2024), pp. 109-116. http://geodesic.mathdoc.fr/item/PDM_2024_1_a7/
[1] Kapovich I., Miasnikov A., Schupp P., and Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[2] Myasnikov A. and Rybalov A., “Generic complexity of undecidable problems”, J. Symbolic Logic., 73:2 (2008), 656–673 | DOI | MR | Zbl
[3] Rybalov A., “On the generic undecidability of the Halting Problem for normalized Turing machines”, Theory of Computing Systems, 60:4 (2017), 671–676 | DOI | MR | Zbl
[4] Rybalov A. N., “On the generic complexity of elementary theories”, Vestnik OmSU, 2015, no. 4, 14–17 (in Russian)
[5] Rybalov A., “Generic complexity of the Diophantine problem”, Groups Complexity Cryptology, 5:1 (2013), 25–30 | DOI | MR | Zbl
[6] Rybalov A., “Generic complexity of Presburger arithmetic”, Theory of Computing Systems, 46:1 (2010), 2–8 | DOI | MR | Zbl
[7] Hirschfeldt D., “Some questions in computable mathematics”, LNCS, 10010, 2017, 22–55 | MR | Zbl
[8] Jockusch C. and Schupp P., “Generic computability, Turing degrees, and asymptotic density”, J. London Math. Soc., 85:2 (2012), 472–490 | DOI | MR | Zbl
[9] Gilman A., Myasnikov A., and Roman'kov V. A., “Random equations in free groups”, Groups Complexity Cryptology, 3:2 (2011), 257–284 | DOI | MR | Zbl
[10] Gilman A., Myasnikov A., and Roman'kov V. A., “Random equations in nilpotent groups”, J. Algebra, 352:1 (2012), 192–214 | DOI | MR | Zbl