Calculation of error-correcting pairs for~an~algebraic-geometric code
Prikladnaâ diskretnaâ matematika, no. 1 (2024), pp. 65-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Error-correcting pairs are calculated explicitly for an arbitrary algebraic-geometric code and its dual code. Such a pair consists of codes that are necessary for an effective decoding algorithm for a given code. The type of pairs depends on the degrees of divisors with which both the original code and one of the codes from error-correcting pair are constructed. So for the algebraic-geometric code $\mathcal{C}_{\mathcal{L}}(D,G)$ of the length $n$ associated with a functional field $F/\mathbb{F}_q$ of genus $g$ the error-correcting pair with number of errors $t=\lfloor (n-\deg(G)-g-1)/{2} \rfloor$ is $(\mathcal{C}_{\mathcal{L}}(D,F), \mathcal{C}_{\mathcal{L}}(D,G+F)^\bot)$ or $(\mathcal{C}_{\mathcal{L}}(D,F)^\bot,\mathcal{C}_{\mathcal{L}}(D,F-G))$. For the dual code $\mathcal{C}_{\mathcal{L}}(D,G)^\bot$ the error-correcting pair with number of errors $t=\lfloor (\deg(G)-3g+1)/{2} \rfloor$ is $(\mathcal{C}_{\mathcal{L}}(D,F),\mathcal{C}_{\mathcal{L}}(D,G-F))$. Considering each component of pair as MDS-code, we obtain additional conditions on the degrees of the divisors $G$ and $F$. In addition, error-correcting pairs are calculated for subfield subcodes $\mathcal{C}_{\mathcal{L}}(D,G)|_{\mathbb{F}_p}$ and $\mathcal{C}_{\mathcal{L}}(D,G)^\perp|_{\mathbb{F}_p}$, where $\mathbb{F}_p$ is a subfield of $\mathbb{F}_q$. The form of a first component in the pair depends on the degrees of the divisors $G$ and $F$ and, in some cases, on the genus $g$.
Keywords: functional field, algebraic-geometric code, error-correcting pair, subfield subcode.
@article{PDM_2024_1_a4,
     author = {A. A. Kuninets and E. S. Malygina},
     title = {Calculation of error-correcting pairs for~an~algebraic-geometric code},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {65--90},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2024_1_a4/}
}
TY  - JOUR
AU  - A. A. Kuninets
AU  - E. S. Malygina
TI  - Calculation of error-correcting pairs for~an~algebraic-geometric code
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2024
SP  - 65
EP  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2024_1_a4/
LA  - ru
ID  - PDM_2024_1_a4
ER  - 
%0 Journal Article
%A A. A. Kuninets
%A E. S. Malygina
%T Calculation of error-correcting pairs for~an~algebraic-geometric code
%J Prikladnaâ diskretnaâ matematika
%D 2024
%P 65-90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2024_1_a4/
%G ru
%F PDM_2024_1_a4
A. A. Kuninets; E. S. Malygina. Calculation of error-correcting pairs for~an~algebraic-geometric code. Prikladnaâ diskretnaâ matematika, no. 1 (2024), pp. 65-90. http://geodesic.mathdoc.fr/item/PDM_2024_1_a4/

[1] Justesen J., Larsen K., Jensen H., et al., “Construction and decoding of a class of algebraic geometry codes”, IEEE Trans. Inform. Theory, 35:4 (1989), 811–821 | DOI | MR | Zbl

[2] Skorobogatov A. N. and Vlădut S. G., “On the decoding of algebraic-geometric codes”, IEEE Trans. Inform. Theory, 36:5 (1990), 1051–1060 | DOI | MR | Zbl

[3] Pellikaan R., “On decoding by error location and dependent sets of error positions”, Discrete Math., 106–107 (1992), 369–381 | DOI | MR | Zbl

[4] Kötter R., “A unified description of an error locating procedure for linear codes”, Proc. Algebraic Combinatorial Coding Theory III (Hermes, 1992), 113–117

[5] Couvreur A., Marquez-Corbella I., and Pellikaan R., “Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes”, IEEE Trans. Inform. Theory, 63 (2017), 5404–5418 | DOI | MR | Zbl

[6] Malygina E. S. and Kuninets A. A., “Calculation of error-correcting pairs for an algebraic-geometric code”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2023, no. 16, 136–140 (in Russian)

[7] Milne J. S., Algebraic Geometry https://www.jmilne.org/math/CourseNotes/AG510.pdf

[8] Stichtenoth H., Algebraic Function Fields and Codes, Springer Verlag, 1991 | MR

[9] Pellikaan R., “On the existence of error-correcting pairs”, Statistical Planning and Inference, 51 (1996), 229–242 | DOI | MR | Zbl

[10] Marquez-Corbella I. and Pellikaan R., “Error-correcting pairs: a new approach to code-based cryptography”, 20th Conf. ACA 2014 (Jul. 2014, New York) https://hal.science/hal-01088433

[11] Mumford D., “Varieties defined by quadratic equations”, Questions on Algebraic Varieties, Springer, Berlin–Heidelberg, 2011, 29–100 | MR