Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2024_1_a4, author = {A. A. Kuninets and E. S. Malygina}, title = {Calculation of error-correcting pairs for~an~algebraic-geometric code}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {65--90}, publisher = {mathdoc}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2024_1_a4/} }
A. A. Kuninets; E. S. Malygina. Calculation of error-correcting pairs for~an~algebraic-geometric code. Prikladnaâ diskretnaâ matematika, no. 1 (2024), pp. 65-90. http://geodesic.mathdoc.fr/item/PDM_2024_1_a4/
[1] Justesen J., Larsen K., Jensen H., et al., “Construction and decoding of a class of algebraic geometry codes”, IEEE Trans. Inform. Theory, 35:4 (1989), 811–821 | DOI | MR | Zbl
[2] Skorobogatov A. N. and Vlădut S. G., “On the decoding of algebraic-geometric codes”, IEEE Trans. Inform. Theory, 36:5 (1990), 1051–1060 | DOI | MR | Zbl
[3] Pellikaan R., “On decoding by error location and dependent sets of error positions”, Discrete Math., 106–107 (1992), 369–381 | DOI | MR | Zbl
[4] Kötter R., “A unified description of an error locating procedure for linear codes”, Proc. Algebraic Combinatorial Coding Theory III (Hermes, 1992), 113–117
[5] Couvreur A., Marquez-Corbella I., and Pellikaan R., “Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes”, IEEE Trans. Inform. Theory, 63 (2017), 5404–5418 | DOI | MR | Zbl
[6] Malygina E. S. and Kuninets A. A., “Calculation of error-correcting pairs for an algebraic-geometric code”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2023, no. 16, 136–140 (in Russian)
[7] Milne J. S., Algebraic Geometry https://www.jmilne.org/math/CourseNotes/AG510.pdf
[8] Stichtenoth H., Algebraic Function Fields and Codes, Springer Verlag, 1991 | MR
[9] Pellikaan R., “On the existence of error-correcting pairs”, Statistical Planning and Inference, 51 (1996), 229–242 | DOI | MR | Zbl
[10] Marquez-Corbella I. and Pellikaan R., “Error-correcting pairs: a new approach to code-based cryptography”, 20th Conf. ACA 2014 (Jul. 2014, New York) https://hal.science/hal-01088433
[11] Mumford D., “Varieties defined by quadratic equations”, Questions on Algebraic Varieties, Springer, Berlin–Heidelberg, 2011, 29–100 | MR