Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2024_1_a1, author = {A. S. Shaporenko}, title = {Construction of balanced functions with high nonlinearity and other cryptographic properties}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {8--23}, publisher = {mathdoc}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2024_1_a1/} }
A. S. Shaporenko. Construction of balanced functions with high nonlinearity and other cryptographic properties. Prikladnaâ diskretnaâ matematika, no. 1 (2024), pp. 8-23. http://geodesic.mathdoc.fr/item/PDM_2024_1_a1/
[1] Matsui M., “Linear cryptanalysis method for DES cipher”, LNCS, 765, 1994, 386–397 | Zbl
[2] Rothaus O. S., “On bent functions”, J. Comb. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[3] Adams C. M., “Constructing symmetric ciphers using the CAST design procedure”, Des. Codes Cryptogr., 12:3 (1997), 283–316 | DOI | MR | Zbl
[4] Hell C., Johansson T., Maximov A., and Meier W., “A stream cipher proposal: Grain-128”, IEEE Intern. Symp. Inform. Theory (Seattle, WA, USA, 2006), 1614–1618
[5] Zheng Y., Pieprzyk J., and Seberry J., “Haval — a one-way hashing algorithm with variable length of output (extended abstract)”, LNCS, 718, 1993, 83–104 | Zbl
[6] Helleseth T. and Kholosha A., “Bent functions and their connections to combinatorics”, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 409, eds. S. R. Blackburn, S. Gerke, and M. Wildon, Cambridge University Press, Cambridge, 2013, 91–126 | MR
[7] Tokareva N., Bent Functions: Results and Applications to Cryptography, Acad. Press, London, 2015 | MR | Zbl
[8] Tokareva N. N., “On the set of derivatives of a Boolean bent function”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 327–350 (in Russian)
[9] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory. Ser. A, 15 (1973), 1–10 | DOI | MR | Zbl
[10] Dillon J. F., Elementary Hadamard Difference Sets, PhD. Thesis, Univ. of Maryland, 1974 | MR | Zbl
[11] Logachev O. A., Salnikov A. A., and Yashchenko V. V., Boolean Functions in Coding Theory and Cryptography, AMS, 2012, 334 pp. | MR | Zbl
[12] Siegentaler T., “Correlation-immunity of nonlinear combining functions for cryptographic applications”, IEEE Trans. Inform. Theory, 30:5 (1984), 776–780 | DOI | MR
[13] Seberry J., Zhang X-M., and Zheng Y., “Nonlinearly balanced Boolean functions and their propagation characteristics”, LNCS, 773, 1994, 49–60 | MR | Zbl
[14] Dobbertin H., “Construction of bent functions and balanced Boolean functions with high nonlinearity”, LNCS, 1008, 1994, 61–74
[15] Dobbertin H. and Leander G., Cryptographer's Toolkit for Construction of 8-bit Bent Functions, Cryptology Archive. Report, Report 2005/089, 2005
[16] Hu X., Yang B., and Huang M., “A construction of highly nonlinear Boolean functions with optimal algebraic immunity and low hardware implementation cost”, Discr. Appl. Math., 285 (2020), 407–422 | DOI | MR | Zbl
[17] Carlet C., Djurasevic M., Jakobovic D., et al., Evolving Constructions for Balanced, Highly Nonlinear Boolean Functions, 2022, arXiv: 2202.08743
[18] Gini A. and Meaux P., “Weightwise perfectly balanced functions and nonlinearity”, LNCS, 13874, 2023, 386–397 | MR
[19] Shaporenko A., “Derivatives of bent functions in connection with the bent sum decomposition problem”, Des. Codes Cryptogr., 91 (2023), 1607–1625 | DOI | MR | Zbl
[20] Tokareva N. N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Adv. Math. Commun., 5:4 (2011), 609–621 | DOI | MR | Zbl
[21] Canteaut A. and Charpin P., “Decomposing bent functions”, IEEE Trans. Inform. Theory, 49:8 (2003), 2004–2019 | DOI | MR | Zbl