Construction of balanced functions with high nonlinearity and other cryptographic properties
Prikladnaâ diskretnaâ matematika, no. 1 (2024), pp. 8-23
Voir la notice de l'article provenant de la source Math-Net.Ru
We present an iterative construction that can be used to construct balanced functions with high nonlinearity. Using this construction, we obtained Boolean functions in an even number $n\geqslant 18$ of variables which have no linear structures with nonlinearity $2^{n-1}-(2^{{n}/{2}-1}+2^{{n}/{2}-3}+2^{{n}/{2}-5}+2^{{n}/{2}-7})$. Additional conditions are given under which the functions obtained using the construction will be correlation immune. We also present results concerning “bent sum decomposition problem”.
Keywords:
balanced Boolean functions, nonlinear Boolean functions, bent functions.
@article{PDM_2024_1_a1,
author = {A. S. Shaporenko},
title = {Construction of balanced functions with high nonlinearity and other cryptographic properties},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {8--23},
publisher = {mathdoc},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2024_1_a1/}
}
A. S. Shaporenko. Construction of balanced functions with high nonlinearity and other cryptographic properties. Prikladnaâ diskretnaâ matematika, no. 1 (2024), pp. 8-23. http://geodesic.mathdoc.fr/item/PDM_2024_1_a1/