Construction of balanced functions with high nonlinearity and other cryptographic properties
Prikladnaâ diskretnaâ matematika, no. 1 (2024), pp. 8-23

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an iterative construction that can be used to construct balanced functions with high nonlinearity. Using this construction, we obtained Boolean functions in an even number $n\geqslant 18$ of variables which have no linear structures with nonlinearity $2^{n-1}-(2^{{n}/{2}-1}+2^{{n}/{2}-3}+2^{{n}/{2}-5}+2^{{n}/{2}-7})$. Additional conditions are given under which the functions obtained using the construction will be correlation immune. We also present results concerning “bent sum decomposition problem”.
Keywords: balanced Boolean functions, nonlinear Boolean functions, bent functions.
@article{PDM_2024_1_a1,
     author = {A. S. Shaporenko},
     title = {Construction of balanced functions with high nonlinearity and other cryptographic properties},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {8--23},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2024_1_a1/}
}
TY  - JOUR
AU  - A. S. Shaporenko
TI  - Construction of balanced functions with high nonlinearity and other cryptographic properties
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2024
SP  - 8
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2024_1_a1/
LA  - ru
ID  - PDM_2024_1_a1
ER  - 
%0 Journal Article
%A A. S. Shaporenko
%T Construction of balanced functions with high nonlinearity and other cryptographic properties
%J Prikladnaâ diskretnaâ matematika
%D 2024
%P 8-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2024_1_a1/
%G ru
%F PDM_2024_1_a1
A. S. Shaporenko. Construction of balanced functions with high nonlinearity and other cryptographic properties. Prikladnaâ diskretnaâ matematika, no. 1 (2024), pp. 8-23. http://geodesic.mathdoc.fr/item/PDM_2024_1_a1/