Construction of balanced functions with high nonlinearity and other cryptographic properties
Prikladnaâ diskretnaâ matematika, no. 1 (2024), pp. 8-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an iterative construction that can be used to construct balanced functions with high nonlinearity. Using this construction, we obtained Boolean functions in an even number $n\geqslant 18$ of variables which have no linear structures with nonlinearity $2^{n-1}-(2^{{n}/{2}-1}+2^{{n}/{2}-3}+2^{{n}/{2}-5}+2^{{n}/{2}-7})$. Additional conditions are given under which the functions obtained using the construction will be correlation immune. We also present results concerning “bent sum decomposition problem”.
Keywords: balanced Boolean functions, nonlinear Boolean functions, bent functions.
@article{PDM_2024_1_a1,
     author = {A. S. Shaporenko},
     title = {Construction of balanced functions with high nonlinearity and other cryptographic properties},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {8--23},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2024_1_a1/}
}
TY  - JOUR
AU  - A. S. Shaporenko
TI  - Construction of balanced functions with high nonlinearity and other cryptographic properties
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2024
SP  - 8
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2024_1_a1/
LA  - ru
ID  - PDM_2024_1_a1
ER  - 
%0 Journal Article
%A A. S. Shaporenko
%T Construction of balanced functions with high nonlinearity and other cryptographic properties
%J Prikladnaâ diskretnaâ matematika
%D 2024
%P 8-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2024_1_a1/
%G ru
%F PDM_2024_1_a1
A. S. Shaporenko. Construction of balanced functions with high nonlinearity and other cryptographic properties. Prikladnaâ diskretnaâ matematika, no. 1 (2024), pp. 8-23. http://geodesic.mathdoc.fr/item/PDM_2024_1_a1/

[1] Matsui M., “Linear cryptanalysis method for DES cipher”, LNCS, 765, 1994, 386–397 | Zbl

[2] Rothaus O. S., “On bent functions”, J. Comb. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[3] Adams C. M., “Constructing symmetric ciphers using the CAST design procedure”, Des. Codes Cryptogr., 12:3 (1997), 283–316 | DOI | MR | Zbl

[4] Hell C., Johansson T., Maximov A., and Meier W., “A stream cipher proposal: Grain-128”, IEEE Intern. Symp. Inform. Theory (Seattle, WA, USA, 2006), 1614–1618

[5] Zheng Y., Pieprzyk J., and Seberry J., “Haval — a one-way hashing algorithm with variable length of output (extended abstract)”, LNCS, 718, 1993, 83–104 | Zbl

[6] Helleseth T. and Kholosha A., “Bent functions and their connections to combinatorics”, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 409, eds. S. R. Blackburn, S. Gerke, and M. Wildon, Cambridge University Press, Cambridge, 2013, 91–126 | MR

[7] Tokareva N., Bent Functions: Results and Applications to Cryptography, Acad. Press, London, 2015 | MR | Zbl

[8] Tokareva N. N., “On the set of derivatives of a Boolean bent function”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 327–350 (in Russian)

[9] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory. Ser. A, 15 (1973), 1–10 | DOI | MR | Zbl

[10] Dillon J. F., Elementary Hadamard Difference Sets, PhD. Thesis, Univ. of Maryland, 1974 | MR | Zbl

[11] Logachev O. A., Salnikov A. A., and Yashchenko V. V., Boolean Functions in Coding Theory and Cryptography, AMS, 2012, 334 pp. | MR | Zbl

[12] Siegentaler T., “Correlation-immunity of nonlinear combining functions for cryptographic applications”, IEEE Trans. Inform. Theory, 30:5 (1984), 776–780 | DOI | MR

[13] Seberry J., Zhang X-M., and Zheng Y., “Nonlinearly balanced Boolean functions and their propagation characteristics”, LNCS, 773, 1994, 49–60 | MR | Zbl

[14] Dobbertin H., “Construction of bent functions and balanced Boolean functions with high nonlinearity”, LNCS, 1008, 1994, 61–74

[15] Dobbertin H. and Leander G., Cryptographer's Toolkit for Construction of 8-bit Bent Functions, Cryptology Archive. Report, Report 2005/089, 2005

[16] Hu X., Yang B., and Huang M., “A construction of highly nonlinear Boolean functions with optimal algebraic immunity and low hardware implementation cost”, Discr. Appl. Math., 285 (2020), 407–422 | DOI | MR | Zbl

[17] Carlet C., Djurasevic M., Jakobovic D., et al., Evolving Constructions for Balanced, Highly Nonlinear Boolean Functions, 2022, arXiv: 2202.08743

[18] Gini A. and Meaux P., “Weightwise perfectly balanced functions and nonlinearity”, LNCS, 13874, 2023, 386–397 | MR

[19] Shaporenko A., “Derivatives of bent functions in connection with the bent sum decomposition problem”, Des. Codes Cryptogr., 91 (2023), 1607–1625 | DOI | MR | Zbl

[20] Tokareva N. N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Adv. Math. Commun., 5:4 (2011), 609–621 | DOI | MR | Zbl

[21] Canteaut A. and Charpin P., “Decomposing bent functions”, IEEE Trans. Inform. Theory, 49:8 (2003), 2004–2019 | DOI | MR | Zbl