Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts
Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 71-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for any natural $k$, any Boolean function can be implemented by a two-pole contact circuit that is $k$-irredundant and allows a $k$-fault detection test of length no more than $3$ relative to arbitrary connected faults of contacts in groups, where each group consists of one closing and one opening contact. We establish that if the Boolean function is not self-dual, then this bound can be lowered to $2$.
Mots-clés : contact circuit
Keywords: connected faults of contacts, fault detection test, Boolean function.
@article{PDM_2023_4_a5,
     author = {K. A. Popkov},
     title = {Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {71--82},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2023_4_a5/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2023
SP  - 71
EP  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2023_4_a5/
LA  - ru
ID  - PDM_2023_4_a5
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts
%J Prikladnaâ diskretnaâ matematika
%D 2023
%P 71-82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2023_4_a5/
%G ru
%F PDM_2023_4_a5
K. A. Popkov. Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts. Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 71-82. http://geodesic.mathdoc.fr/item/PDM_2023_4_a5/

[1] Lupanov O. B., Asymptotic Bounds of the Complexity of Control Systems, MSU Publ., M., 1984, 138 pp. (in Russian)

[2] Chegis I. A. and Yablonskiy S. V., “Logical ways of monitoring the operation of electrical circuits”, Trudy MIAN, 51, 1958, 270–360 (in Russian) | MR | Zbl

[3] Yablonskiy S. V., “Reliability and verification of control systems”, Materialy Vsesoyuznogo seminara po diskretnoy matematike i ee prilozheniyam (Moscow, 31 Jan.–2 Feb. 1984), MSU Publ., M., 1986, 7–12 (in Russian)

[4] Yablonskiy S. V., “Some questions of reliability and verification of control systems”, Matematicheskie Voprosy Kibernetiki, 1988, no. 1, 5–25 (in Russian) | MR | Zbl

[5] Red'kin N. P., Circuits Reliability and Diagnostics, MSU Publ., M., 1992, 192 pp. (in Russian)

[6] Madatyan Kh. A., “Complete test for non-repetitive contact circuits”, Problemy Kibernetiki, 23, Nauka Publ., M., 1970, 103–118 (in Russian) | MR

[7] Red'kin N. P., “On complete fault detection tests for contact circuits”, Metody Diskretnogo Analiza v Issledovanii Ekstremal'nykh Struktur, 39, Math. Inst. Sib. Br. USSR Acad. Sci., Novosibirsk, 1983, 80–87 (in Russian) | MR

[8] Red'kin N. P., “On fault detection tests of closure and opening”, Metody Diskretnogo Analiza v Optimizatsii Upravlyayushchikh Sistem, 40, Math. Inst. Sib. Br. USSR Acad. Sci., Novosibirsk, 1983, 87–99 (in Russian) | MR

[9] Romanov D. S. and Romanova E. Y., “Single fault detection tests for generalized iterative switching circuits”, Moscow Univ. Comput. Math. Cybern., 39:3 (2015), 144–152 | DOI | MR | Zbl

[10] Popkov K. A., “On fault detection tests of contact break for contact circuits”, Discrete Math. Appl., 28:6 (2018), 369–383 | DOI | DOI | MR | MR | Zbl

[11] Popkov K. A., “On diagnostic tests of contact break for contact circuits”, Discrete Math. Appl., 30:2 (2020), 103–116 | DOI | DOI | MR | Zbl

[12] Popkov K. A., “Short single fault detection tests for contact circuits under breaks and closures of contacts”, Intellektual'nyye Sistemy. Teoriya i Prilozheniya, 23:3 (2019), 97–130 (in Russian)

[13] Red'kin N. P., “Diagnostic tests for contact circuits”, Moscow Univ. Math. Bull., 74:2 (2019), 62–64 | DOI | MR | Zbl

[14] Popkov K. A., “On complete diagnostic tests for contact circuits under breaks and/or closures of contacts”, Izvestiya Vysshikh Uchebnykh Zavedeniy. Povolzhskiy Region. Fiziko-matematicheskiye nauki, 2019, no. 3 (51), 3–24 (in Russian)

[15] Popkov K. A., “Short tests of closures for contact circuits”, Math. Notes, 107:4 (2020), 653–662 | DOI | DOI | MR | MR | Zbl

[16] Popkov K. A., “Bounds on Shannon functions of lengths of contact closure tests for contact circuits”, Discrete Math. Appl., 31:3 (2021), 165–178 | DOI | DOI | MR | MR | Zbl

[17] Red'kin N. P., “On one mathematical model of faults of contact circuits”, Vestnik Moskovskogo Universiteta. Ser. 1. Matematika. Mekhanika, 1993, no. 1, 42–49 (in Russian) | Zbl

[18] Red'kin N. P., “Single tests for connected faults of contact circuits”, Vestnik Moskovskogo Universiteta. Ser. 1. Matematika. Mekhanika, 1993, no. 2, 20–27 (in Russian) | Zbl