Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts
Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 71-82

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for any natural $k$, any Boolean function can be implemented by a two-pole contact circuit that is $k$-irredundant and allows a $k$-fault detection test of length no more than $3$ relative to arbitrary connected faults of contacts in groups, where each group consists of one closing and one opening contact. We establish that if the Boolean function is not self-dual, then this bound can be lowered to $2$.
Mots-clés : contact circuit
Keywords: connected faults of contacts, fault detection test, Boolean function.
@article{PDM_2023_4_a5,
     author = {K. A. Popkov},
     title = {Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {71--82},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2023_4_a5/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2023
SP  - 71
EP  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2023_4_a5/
LA  - ru
ID  - PDM_2023_4_a5
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts
%J Prikladnaâ diskretnaâ matematika
%D 2023
%P 71-82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2023_4_a5/
%G ru
%F PDM_2023_4_a5
K. A. Popkov. Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts. Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 71-82. http://geodesic.mathdoc.fr/item/PDM_2023_4_a5/