Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts
Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 71-82
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for any natural $k$, any Boolean function can be implemented by a two-pole contact circuit that is $k$-irredundant and allows a $k$-fault detection test of length no more than $3$ relative to arbitrary connected faults of contacts in groups, where each group consists of one closing and one opening contact. We establish that if the Boolean function is not self-dual, then this bound can be lowered to $2$.
Mots-clés :
contact circuit
Keywords: connected faults of contacts, fault detection test, Boolean function.
Keywords: connected faults of contacts, fault detection test, Boolean function.
@article{PDM_2023_4_a5,
author = {K. A. Popkov},
title = {Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {71--82},
publisher = {mathdoc},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2023_4_a5/}
}
TY - JOUR AU - K. A. Popkov TI - Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts JO - Prikladnaâ diskretnaâ matematika PY - 2023 SP - 71 EP - 82 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2023_4_a5/ LA - ru ID - PDM_2023_4_a5 ER -
K. A. Popkov. Short fault detection tests for contact circuits under arbitrary weakly connected faults of contacts. Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 71-82. http://geodesic.mathdoc.fr/item/PDM_2023_4_a5/