On the number of $\ell$-suitable Boolean functions in constructions of filter and combining models of stream ciphers
Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 21-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that every stream cipher is based on a good pseudorandom generator. For cryptographic purposes, we are interested in generating pseudorandom sequences with the maximum possible period. A feedback register is one of the most known cryptographic primitives that is used to construct stream ciphers. We consider periodic properties of pseudorandom sequences produced by filter and combiner generators (two known schemes of stream generators based on feedback registers). We analyze functions in these schemes that lead to output sequences of period at least a given number $\ell$. We call such functions $\ell$-suitable and count the exact number of them for an arbitrary $n$.
Keywords: stream cipher, filter generator, combiner generator, Boolean function.
@article{PDM_2023_4_a2,
     author = {T. A. Bonich and M. A. Panferov and N. N. Tokareva},
     title = {On the number of $\ell$-suitable {Boolean} functions in constructions of filter and combining models of stream ciphers},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {21--28},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2023_4_a2/}
}
TY  - JOUR
AU  - T. A. Bonich
AU  - M. A. Panferov
AU  - N. N. Tokareva
TI  - On the number of $\ell$-suitable Boolean functions in constructions of filter and combining models of stream ciphers
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2023
SP  - 21
EP  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2023_4_a2/
LA  - en
ID  - PDM_2023_4_a2
ER  - 
%0 Journal Article
%A T. A. Bonich
%A M. A. Panferov
%A N. N. Tokareva
%T On the number of $\ell$-suitable Boolean functions in constructions of filter and combining models of stream ciphers
%J Prikladnaâ diskretnaâ matematika
%D 2023
%P 21-28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2023_4_a2/
%G en
%F PDM_2023_4_a2
T. A. Bonich; M. A. Panferov; N. N. Tokareva. On the number of $\ell$-suitable Boolean functions in constructions of filter and combining models of stream ciphers. Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 21-28. http://geodesic.mathdoc.fr/item/PDM_2023_4_a2/

[1] Golić J. D., “On the security of nonlinear filter generators”, LNCS, 1039, 1996, 173–188 | Zbl

[2] Courtois N. T. and Meier W., “Algebraic attacks on stream ciphers with linear feedback”, LNCS, 2656, 2003, 345–359 | MR | Zbl

[3] Salhab O., Jweihan N., Jodeh M. A., et al., “Survey paper: Pseudo random number generators and security tests”, J. Theor. Appl. Inform. Technology, 96 (2018), 1951–1970

[4] Hamza R., “A novel pseudo random sequence generator for image-cryptographic applications”, J. Inform. Security Appl., 35 (2017), 119–127

[5] Goresky M. and Klapper A., Algebraic Shift Register Sequences, Cambridge University Press, Cambridge, 2012, 496 pp. | MR | Zbl

[6] Menezes A. J., Van Oorschot P. C., and Vanstone S. A., Handbook of Applied Cryptography, CRC Press, Boca Raton, 1996, 780 pp. | MR

[7] Márton K., Suciu A., Săcărea C., and Cret O., “Generation and testing of random numbers for cryptographic applications”, Proc. Romanian Academy, 13 (2012), 368–377 | MR

[8] Parvees M. Y. M., Samath J. A., and Bose B. P., “Cryptographically secure diffusion sequences — an attempt to prove sequences are random”, Advances in Big Data and Cloud Computing, Advances in Intelligent Systems and Computing, 750, 2019, 433–442 | DOI

[9] Key E. L., “An analysis of the structures and complexity of nonlinear binary sequence generators”, IEEE Trans. Inform. Theory, 22 (1976), 732–736 | DOI | Zbl

[10] Gorodilova A. A., “From cryptanalysis to cryptographic property of a Boolean function”, Prikladnaya Diskretnaya Matematika, 2016, no. 3(33), 16–44 (in Russian) | DOI | MR | Zbl

[11] Gluhov M. M., Elizarov V. P., and Nechaev A. A., Algebra, Gelios ARV Publ., M., 2003, 336 pp. (in Russian)

[12] Hell M., Johansson T., and Meier W., “Grain: A stream cipher for constrained environments”, Intern. J. Wireless Mobile Computing, 2:1 (2007), 86–93 | DOI | MR

[13] Canteaut A., “A5/1”, Encyclopedia of Cryptography and Security, Springer, Boston, 2011, 1–2

[14] Gollmann D., Kaskadenschaltungen taktgesteuerter Schieberegister als Pseudozufallszahlengeneratoren, PhD thesis, Johannes Kepler Universität Linz, Wien, 1986 (in German) | MR

[15] Bonich T. A., Panferov M. A., and Tokareva N. N., “On the number of unsuitable Boolean functions in constructions of filter and combining models of stream ciphers”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 13 (2020), 78–80 | DOI

[16] Carlet C., “Boolean functions for cryptography and error-correcting codes”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, eds. Y. Crama and P. L. Hammer, Cambridge University Press, Cambridge, 2010, 257–397 | DOI | MR | Zbl

[17] Golomb S. W., Shift Register Sequences, Holden-Day, San Francisco, 1967 | MR | Zbl