Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2023_3_a6, author = {A. N. Rybalov}, title = {On generic complexity of the integer factorization problem}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {121--126}, publisher = {mathdoc}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2023_3_a6/} }
A. N. Rybalov. On generic complexity of the integer factorization problem. Prikladnaâ diskretnaâ matematika, no. 3 (2023), pp. 121-126. http://geodesic.mathdoc.fr/item/PDM_2023_3_a6/
[1] Adleman L. M. and McCurley K. S., “Open problems in number theoretic complexity, II”, LNCS, 877, 1994, 291–322 | MR | Zbl
[2] Rivest R., Shamir A., and Adleman L., “A method for obtaining digital signatures and public-key cryptosystems”, Commun. ACM, 21:2 (1978), 120–126 | DOI | MR | Zbl
[3] Rybalov A. N., “On generic complexity of the quadratic residuosity problem”, Prikladnaya Diskretnaya Matematika, 2015, no. 2(28), 54–58 (in Russian) | MR
[4] Rybalov A. N., “On generic complexity of the discrete logarithm problem”, Prikladnaya Diskretnaya Matematika, 2016, no. 3(33), 93–97 (in Russian) | Zbl
[5] Rybalov A. N., “On generic complexity of the problem of finding roots in groups of residues”, Prikladnaya Diskretnaya Matematika, 2017, no. 38, 95–100 (in Russian)
[6] Kapovich I., Miasnikov A., Schupp P., and Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[7] Impagliazzo R. and Wigderson A., “P $=$ BPP unless E has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC (El Paso), ACM, 1997, 220–229 | MR