Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2023_3_a2, author = {I. V. Martynenkov}, title = {Secure formation of public parameters and elimination of vulnerabilities of zero-knowledge succint non-interactive arguments of knowledge}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {28--43}, publisher = {mathdoc}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2023_3_a2/} }
TY - JOUR AU - I. V. Martynenkov TI - Secure formation of public parameters and elimination of vulnerabilities of zero-knowledge succint non-interactive arguments of knowledge JO - Prikladnaâ diskretnaâ matematika PY - 2023 SP - 28 EP - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2023_3_a2/ LA - ru ID - PDM_2023_3_a2 ER -
%0 Journal Article %A I. V. Martynenkov %T Secure formation of public parameters and elimination of vulnerabilities of zero-knowledge succint non-interactive arguments of knowledge %J Prikladnaâ diskretnaâ matematika %D 2023 %P 28-43 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2023_3_a2/ %G ru %F PDM_2023_3_a2
I. V. Martynenkov. Secure formation of public parameters and elimination of vulnerabilities of zero-knowledge succint non-interactive arguments of knowledge. Prikladnaâ diskretnaâ matematika, no. 3 (2023), pp. 28-43. http://geodesic.mathdoc.fr/item/PDM_2023_3_a2/
[1] Martynenkov I. V., “Zero-knowledge succinct non-interactive arguments of knowledge based on sets of polynomials”, Prikladnaya Diskretnaya Matematika, 2023, no. 59, 34–72 (in Russian) | DOI | MR
[2] Parno B., Howell J., Gentry C., and Raykova M., “Pinocchio: Nearly practical verifiable computation”, Proc. 34th IEEE Symp. Security and Privacy (Oakland, 2013), 238–252
[3] Ben-Sasson E., Chiesa A., Tromer E., and Virza M., “Succinct non-interactive Zero Knowledge for a von Neumann architecture”, Proc. 23rd USENIX Security Symp. (San Diego, CA, USA, 2014), 781–796
[4] Hopwood D., Bowe S., Hornby T., and Wilcox N., Zcash Protocol Specification. Version 2021.2.16 [NU5], 2021, 213 pp.
[5] Bowe S., Gabizon A., and Green M.D., A Multi-Party Protocol for Constructing the Public Parameters of the Pinocchio zk-SNARK, Cryptology, , 2017, 25 pp. https://ia.cr/2017/602
[6] Groth J., “On the size of pairing-based non-interactive arguments”, LNCS, 9666, 2016, 305–326 | MR | Zbl
[7] Bowe S., Gabizon A., and Miers I., Scalable Multi-Party Computation for zk-SNARK Parameters in the Random Beacon Model, Cryptology, , 2017, 24 pp. https://eprint.iacr.org/2017/1050
[8] Groth J. and Maller M., Snarky Signatures: Minimal Signatures of Knowledge from Simulation-Extractable SNARKs, , 2017, 36 pp. https://eprint.iacr.org/2017/540.pdf | MR
[9] Gabizon A., On the Security of the BCTV Pinocchio zk-SNARK Variant, Cryptology, , 2019, 9 pp. https://eprint.iacr.org/2019/119 | Zbl
[10] Parno B., A Note on the Unsoundness of vnTinyRAM's SNARK, Cryptology, , 2015, 4 pp. https://eprint.iacr.org/2015/437
[11] Maller M., A Proof of Security for the Sapling Generation of zk-SNARK Parameters in the Generic Group Model, 2018, 12 pp. https://github.com/zcash/saplingsecurity-analysis/blob/master/MaryMallerUpdated.pdf
[12] Groth J., Kohlweiss M., Maller M., et al., Updatable and Universal Common Reference Strings with Applications to zk-SNARKs, Cryptology, , 2018, 38 pp. https://eprint.iacr.org/2018/280 | MR
[13] Maller M., Bowe S., Kohlweiss M., and Meiklejohn S., Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and Updateable Structured Reference Strings, Cryptology, , 2019, 20 pp. https://eprint.iacr.org/2019/099
[14] Ben-Sasson E., Chiesa A., Green M., et al., “Secure sampling of public parameters for succinct zero knowledge proofs”, IEEE Symp. SP 2015 (San Jose, CA, USA, 2015), 287–304
[15] Campanelli M., Gennaro R., Goldfeder S., and Nizzardo L., “Zero-knowledge contingent payments revisited: Attacks and payments for services”, Proc. ACM SIGSAC Conf. CCS'17, ACM, N.Y., 2017, 229–243 | DOI
[16] Schnorr C., “Efficient identification and signatures for smart cards”, LNCS, 435, 1990, 239–252 | MR | Zbl
[17] Cheremushkin A. V., Cryptographic Protocols. Basic Properties and Vulnerabilities, Akademiya Publ., M., 2009, 272 pp. (in Russian)
[18] Groth J., “Short pairing-based non-interactive zero-knowledge arguments”, LNCS, 6477, 2010, 321–340 | Zbl
[19] Ben-Sasson E., Chiesa A., Tromer E., and Virza M., Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture, Updated version, , 2019, 37 pp. https://eprint.iacr.org/2013/879.pdf
[20] Backes M., Barbosa M., Fiore D., and Reischuk R. M., “ADSNARK: Nearly practical and privacy-preserving proofs on authenticated data”, Proc. 2015 IEEE Symp. Security and Privacy (San Jose, CA, USA, 2015), 271–286
[21] Fuchsbauer G., Subversion-Zero-Knowledge Snarks, Cryptology, , 2017, 32 pp. https://eprint.iacr.org/2017/587 | MR | Zbl
[22] zkSNARKs implementation in JavaScript WASM, \href{https://github.com/iden3/snarkjs}f{https://github.com/iden3/snarkjs}
[23] C$++$ library for zkSNARKs, https://github.com/scipr-lab/libsnark
[24] Martynenkov I. V., “Ways to improve the performance of zero-knowledge succinct non-interactive arguments of knowledge and analysis of the results achieved”, Prikladnaya Diskretnaya Matematika, 2023, no. 60, 40–58 (in Russian) | MR
[25] Gennaro R., Gentry C., Parno B., and Raykova M., “Quadratic span programs and succinct NIZKs without PCPs”, LNCS, 7881, 2013, 626–645 | MR | Zbl
[26] Ben-Sasson E., Chiesa A., Genkin D., et al., “SNARKs for C: Verifying program executions succinctly and in zero knowledge”, LNCS, 8043, 2013, 90–108 | MR | Zbl
[27] Danezis G., Fournet C., Groth J., and Kohlweiss M., “Square span programs with applications to succinct NIZK arguments”, LNCS, 8873, 2014, 532–550 | MR | Zbl
[28] Ben-Sasson E., Chiesa A., Tromer E., and Virza M., “Scalable zero knowledge via cycles of elliptic curves”, LNCS, 8617, 2014, 276–294 | MR | Zbl
[29] Costello C., Fournet C., Howell J., et al., “Geppetto: Versatile verifiable computation”, Proc. IEEE Symp. SP'15, IEEE Computer Society, USA, 2015, 253–270