On additive differential probabilities of a composition of bitwise XORs
Prikladnaâ diskretnaâ matematika, no. 2 (2023), pp. 59-75

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the additive differential probabilities $\mathrm{adp}_k^{\oplus}$ of compositions of $k - 1$ bitwise XORs. For vectors $\alpha^1, \ldots, \alpha^{k+1} \in \mathbb{Z}_2^n$, it is defined as the probability of transformation input differences $\alpha^1, \ldots, \alpha^k$ to the output difference $\alpha^{k+1}$ by the function $x^1 \oplus \ldots \oplus x^k$, where $x^1, \ldots, x^k \in \mathbb{Z}_2^n$ and $k \geq 2$. It is used for differential cryptanalysis of symmetric-key primitives, such as Addition-Rotation-XOR constructions. Several results which are known for $\\mathrm{adp}_2^{\oplus}$ are generalized for $\mathrm{adp}_k^{\oplus}$. Some argument symmetries are proven for $\mathrm{adp}_k^{\oplus}$. Recurrence formulas which allow us to reduce the dimension of the arguments are obtained. All impossible differentials as well as all differentials of $\mathrm{adp}_k^{\oplus}$ with the probability $1$ are found. For even $k$, it is proven that $\max\limits_{\alpha^1, \ldots, \alpha^{k} \in \mathbb{Z}_2^n} \mathrm{adp}_k^{\oplus}(\alpha^1,\dots,\alpha^{k}\to\alpha^{k+1}) = \mathrm{adp}_k^{\oplus}(\alpha^1,\dots,0,\alpha^{k+1}\to\alpha^{k+1})$. Matrices that can be used for efficient calculating $\mathrm{adp}_k^{\oplus}$ are constructed. It is also shown that the cases of even and odd $k$ differ significantly.
Keywords: additive differential probabilities, differential cryptanalysis.
Mots-clés : ARX, XOR
@article{PDM_2023_2_a4,
     author = {I. A. Sutormin and N. A. Kolomeets},
     title = {On additive differential probabilities of a composition of bitwise {XORs}},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {59--75},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2023_2_a4/}
}
TY  - JOUR
AU  - I. A. Sutormin
AU  - N. A. Kolomeets
TI  - On additive differential probabilities of a composition of bitwise XORs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2023
SP  - 59
EP  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2023_2_a4/
LA  - en
ID  - PDM_2023_2_a4
ER  - 
%0 Journal Article
%A I. A. Sutormin
%A N. A. Kolomeets
%T On additive differential probabilities of a composition of bitwise XORs
%J Prikladnaâ diskretnaâ matematika
%D 2023
%P 59-75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2023_2_a4/
%G en
%F PDM_2023_2_a4
I. A. Sutormin; N. A. Kolomeets. On additive differential probabilities of a composition of bitwise XORs. Prikladnaâ diskretnaâ matematika, no. 2 (2023), pp. 59-75. http://geodesic.mathdoc.fr/item/PDM_2023_2_a4/