Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2023_2_a3, author = {I. V. Martynenkov}, title = {Ways to improve the performance of zero-knowledge succinct non-interactivearguments of knowledge and~the analysis of the rusults achieved}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {40--58}, publisher = {mathdoc}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2023_2_a3/} }
TY - JOUR AU - I. V. Martynenkov TI - Ways to improve the performance of zero-knowledge succinct non-interactivearguments of knowledge and~the analysis of the rusults achieved JO - Prikladnaâ diskretnaâ matematika PY - 2023 SP - 40 EP - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2023_2_a3/ LA - ru ID - PDM_2023_2_a3 ER -
%0 Journal Article %A I. V. Martynenkov %T Ways to improve the performance of zero-knowledge succinct non-interactivearguments of knowledge and~the analysis of the rusults achieved %J Prikladnaâ diskretnaâ matematika %D 2023 %P 40-58 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2023_2_a3/ %G ru %F PDM_2023_2_a3
I. V. Martynenkov. Ways to improve the performance of zero-knowledge succinct non-interactivearguments of knowledge and~the analysis of the rusults achieved. Prikladnaâ diskretnaâ matematika, no. 2 (2023), pp. 40-58. http://geodesic.mathdoc.fr/item/PDM_2023_2_a3/
[1] Martynenkov I. V., “Zero-knowledge succinct non-interactive arguments of knowledge based on sets of polynomials”, Prikladnaya Diskretnaya Matematika, 2023, no. 59, 20–57 (in Russian)
[2] L. Grassi, D. Khovratovich, C. Rechberger et al, Poseidon: A New Hash Function for Zero Knowledge Proof Systems, Cryptology ePrint Archive. Paper 2019/458, , 2019 https://eprint.iacr.org/2019/458
[3] J. Baylina, M. Bellés, 4-bit Window Pedersen Hash On The Baby Jubjub Elliptic Curve, 2019, 8 pp. https://docs.iden3.io/publications/pdfs/Pedersen-Hash.pdf
[4] O. Regev, “New lattice based cryptographic constructions”, Proc. 35th Ann. ACM Symp. on Theory of Computing, ACM, N.Y., 2003, 407–416 | DOI | MR | Zbl
[5] O. Regev, “New lattice-based cryptographic constructions”, J. ACM, 51:6 (2004), 899–942 | DOI | MR | Zbl
[6] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography”, Proc. 37th Ann. ACM Symp. on Theory of Computing, ACM, N.Y., 2005, 84–93 | MR | Zbl
[7] Y. Zhang, C. Papamanthou, J. Katz, “ALITHEIA: Towards practical verifiable graph processing”, Proc. CCS'14, ACM, N.Y., 2014, 856–867
[8] J. Groth, “Short pairing-based non-interactive zero-knowledge arguments”, LNCS, 6477, 2010, 321–340 | Zbl
[9] H. Lipmaa, “Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments”, LNCS, 7194, 2012, 169–189 | MR | Zbl
[10] N. Pippenger, “On the evaluation of powers and related problems”, 17th Ann. Symp. SFCS'1976 (Houston, TX, USA, 1976), 258–263 | MR
[11] J. Bos, M. Coster, “Addition chain heuristics”, LNCS, 435, 1990, 400–407 | MR
[12] E. Ben-Sasson, A. Chiesa, D. Genkin et al, “SNARKs for C: Verifying program executions succinctly and in zero knowledge”, LNCS, 8043, 2013, 90–108 | MR | Zbl
[13] B. Parno, J. Howell, C. Gentry, M. Raykova, “Pinocchio: Nearly practical verifiable computation”, Proc. 34th IEEE Symp. on Security and Privacy (Berkeley, CA, USA), 2013, 238–252
[14] E. Ben-Sasson, A. Chiesa, E. Tromer, M. Virza, Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture, Updated version, , 2019, 37 pp. https://eprint.iacr.org/2013/879.pdf
[15] R. Gennaro, C. Gentry, B. Parno, M. Raykova, “Quadratic span programs and succinct NIZKs without PCPs”, LNCS, 7881, 2013, 626–645 | MR | Zbl
[16] Costello C., Pairings for Beginners, , 2012, 146 pp. https://www.craigcostello.com.au/pairings/PairingsForBeginners.pdf
[17] J. Groth, “On the size of pairing-based non-interactive arguments”, LNCS, 9666, 2016, 305–326 | MR | Zbl
[18] G. Danezis, C. Fournet, J. Groth, M. Kohlweiss, “Square span programs with applications to succinct NIZK arguments”, LNCS, 8873, 2014, 532–550 | MR | Zbl
[19] H. Lipmaa, Almost Optimal Short Adaptive Non-Interactive Zero Knowledge, Tech. Rep. 2014/396, International Association for Cryptologic Research, 2014, 20 pp. http://eprint.iacr.org/2014/396 | Zbl
[20] R. Gennaro, C. Gentry, B. Parno, “Non-interactive verifiable computing: Outsourcing computation to untrusted workers”, LNCS, 6223, 2010, 465–482 | MR | Zbl
[21] Lee J. Dory, “Efficient, transparent arguments for generalised inner products and polynomial commitments”, LNCS, 13043, 2021, 1–34 | MR | Zbl
[22] J. Groth, R. Ostrovsky, A. Sahai, “Perfect non-interactive zero knowledge for NP”, LNCS, 4004, 2006, 339–358 | MR | Zbl
[23] J. Groth, R. Ostrovsky, A. Sahai, “Non-interactive zaps and new techniques for NIZK”, LNCS, 4117, 2006, 97–111 | MR | Zbl
[24] M. Abe, S. Fehr, “Perfect NIZK with adaptive soundness”, LNCS, 4392, 2007, 118–136 | MR | Zbl
[25] G. Gentry, “Fully homomorphic encryption using ideal lattices”, Proc. 41 Ann. ACM Symp. Theory of Computing, v. 9, ACM, N.Y., 2009, 169–178 | DOI | MR | Zbl
[26] J. Groth, “Linear algebra with sub-linear zero-knowledge arguments”, LNCS, 5677, 2009, 192–208 | MR | Zbl
[27] J. Groth, “Short non-interactive zero-knowledge proofs”, LNCS, 6477, 2010, 341–358 | Zbl
[28] H. Lipmaa, “Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes”, LNCS, 8269, 2013, 41–60 | Zbl
[29] P. Fauzi, H. Lipmaa, B. Zhang, “Efficient modular NIZK arguments from shift and product”, LNCS, 8257, 2013, 92–121 | MR
[30] A. E. Kosba, D. Papadopoulos, C. Papamanthou et al, TRUESET: Nearly Practical Verifiable Set Computations, Cryptology ePrint Archive. Report 2014/160, , 2014, 30 pp. http://eprint.iacr.org/2014/160
[31] H. Lipmaa, “Efficient NIZK arguments via parallel verification of benes networks”, LNCS, 8642, 2014, 416–434 | MR | Zbl
[32] E. Ben-Sasson, A. Chiesa, E. Tromer, M. Virza, “Scalable zero knowledge via cycles of elliptic curves”, LNCS, 8617, 2014, 276–294 | MR | Zbl
[33] C. Costello, C. Fournet, J. Howell et al, “Geppetto: Versatile verifiable computation”, Proc. IEEE Symp. SP'15, IEEE Computer Society, USA, 2015, 253–270
[34] M. Backes, M. Barbosa, D. Fiore, R. M. Reischuk, “ADSNARK: Nearly practical and privacy-preserving proofs on authenticated data”, IEEE Symp. on Security and Privacy (San Jose, CA, USA, 2015), 271–286
[35] J. Groth, M. Maller, Snarky Signatures: Minimal Signatures of Knowledge from Simulation-Extractable SNARKs, IACR Cryptology ePrint Archive, 2017, 36 pp. | MR
[36] A. Chiesa, Y. Hu, M. Maller et al, “Marlin: Preprocessing zk-SNARKs with universal and updatable SRS”, LNCS, 12105, 2020, 738–768 | MR
[37] B. Applebaum, Y. Ishai, E. Kushilevitz, “From secrecy to soundness: Efficient verification via secure computation”, LNCS, 6198, 2020, 152–163
[38] Reitwiebner C., zkSNARKs in a Nutshell, , 2017, 15 pp. https://blog.ethereum.org/2016/12/05/zksnarks-in-a-nutshell/
[39] N. Bitansky, R. Canetti, A. Chiesa, E. Tromer, “From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again”, Proc. ITCS'12, ACM, N.Y., 2012, 326–349 | MR | Zbl
[40] S. Goldwasser, H. Lin, A. Rubinstein, Delegation of Computation without Rejection Problem from Designated Verifier CS-proofs, Cryptology ePrint Archive. Report 2011/456, 2011, 30 pp.
[41] M. Ajtai, “Generating hard instances of lattice problems (extended abstract)”, Proc. STOC'96, ACM, N.Y., 1996, 99–108 | MR | Zbl
[42] C. Papamanthou, E. Shi, R. Tamassia, K. Yi, “Streaming authenticated data structures”, LNCS, 7881, 2013, 353–370 | MR | Zbl
[43] J. Katz, V. Kolesnikov, X. Wang, “Improved non-interactive zero knowledge with applications to post-quantum signatures”, Proc. ACM SIGSAC Conf. CCS'18, ACM, N.Y., 2018, 525–537 | DOI
[44] Bünz B., Fisch B., and Szepieniec A., Transparent SNARKs from DARK Compilers, Cryptology ePrint Archive. Paper 2019/1229, , 2019, 59 pp. https://eprint.iacr.org/2019/1229 | MR
[45] S. Ames, C. Hazay, Y. Ishai, M. Venkitasubramaniam, “Ligero: Lightweight sublinear arguments without a trusted setup”, Proc. ACM SIGSAC Conf. CCS'17, ACM, N.Y., 2017, 2087–2104 | DOI
[46] A. Fiat, S. Shamir, “How to prove yourself: Practical solutions to identification and signature problems”, LNCS, 263, 1986, 186–194 | MR
[47] A. Aho, J. Hopcroft, J. Ulman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974, 470 pp. | MR | Zbl
[48] M. Scott, “Implementing cryptographic pairings”, Proc. 1st First Intern. Conf. on Pairing Based Cryptography, Springer Verlag, Berlin–Heidelberg, 2007, 177–196 | MR | Zbl
[49] S. D. Galbraith, K. Harrison, D. Soldera, “Implementing the Tate pairing”, LNCS, 2369, 2002, 324–337 | MR | Zbl
[50] P. S. L. M. Barreto, B. Lynn, M. Scott, “Constructing elliptic curves with prescribed embedding degrees”, LNCS, 2576, 2003, 257–267 | Zbl
[51] F. Vercauteren, “Optimal pairings”, IEEE Trans. Inform. Theory, 56:1 (2020), 455–461 | DOI | MR
[52] J. L. Beuchat, J. E. González-Díaz, S. Mitsunari et al, “High-speed software implementation of the optimal ate pairing over Barreto Naehrig curves”, LNCS, 6487, 2010, 21–39 | MR | Zbl
[53] M. Scott, N. Benger, M. Charlemagne et al, “On the final exponentiation for calculating pairings on ordinary elliptic curves”, LNCS, 5671, 2009, 78–88 | MR | Zbl
[54] R. Granger, M. Scott, “Faster squaring in the cyclotomic subgroup of sixth degree extensions”, LNCS, 6056, 2010, 209–223 | MR | Zbl
[55] Fuentes-Castañeda L., Knapp E., and Rodríguez-Henríquez F., “Faster hashing to $\mathbb{Z}_2$”, LNCS, 7118, 2012, 412–430 | MR | Zbl
[56] T. Kim, S. Kim, J. H. Cheon, “On the final exponentiation in Tate pairing computations”, IEEE Trans. Inform. Theory, 59:6 (2013), 4033–4041 | DOI | MR | Zbl
[57] J. A. Solinas, ID-based Digital Signature Algorithms, 2003, 32 pp. http://cacr.uwaterloo.ca/conferences/2003/ecc2003/solinas.pdf | Zbl
[58] M. Scott, “Computing the Tate pairing”, LNCS, 3376, 2005, 293–304 | MR | Zbl
[59] R. Granger, N. Smart, On Computing Products of Pairings, Cryptology ePrint Archive. Report 2006/172, 2006, 11 pp.
[60] Arène C., Lange T., Naehrig M., and Ritzenthaler C., “Faster computation of the Tate pairing”, J. Number Theory, 131:5 (2022), 842–857 | DOI | MR
[61] Frey G. and Rück H. G., “A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves”, Mathematics of Computation, 62:206 (1994), 865–874 | MR | Zbl
[62] H. G. and Rück, “The Tate pairing and the discrete logarithm applied to elliptic curve cryptosystems”, IEEE Trans. Inform. Theory, 45:5 (2006), 1717–1719 | MR
[63] S. D. Galbraith, K. G. Paterson, N. P. Smart, “Pairings for cryptographers”, Discrete Appl. Math., 156:16 (2008), 3113–3121 | DOI | MR | Zbl
[64] N. Bitansky, R. Canetti, A. Chiesa, E. Tromer, Recursive Composition and Bootstrapping for Snarks and Proof-Carrying Data, IACR Cryptology ePrint Archive, , 2012, 61 pp. http://eprint.iacr.org/2012/095 | MR
[65] P. Valiant, “Incrementally verifiable computation or proofs of knowledge imply time/space efficiency”, LNCS, 4948, 2008, 1–18 | MR | Zbl
[66] G. D. Crescenzo, H. Lipmaa, “Succinct NP proofs from an extractability assumption”, LNCS, 5028, 2008, 175–185 | MR | Zbl
[67] T. Mei, “Polylogarithmic two-round argument systems”, J. Math. Cryptol., 2:4 (2008), 343–363 | MR
[68] A. Chiesa, D. Ojha, N. Spooner, “FRACTAL: Post-quantum and transparent recursive proofs from holography”, LNCS, 12105, 2020, 769–793 | MR
[69] A. Kattis, K. Panarin, A. Vlasov, RedShift: Transparent SNARKs from List Polynomial Commitment IOPs, Cryptology ePrint Archive. Paper 2019/1400, , 2019, 20 pp. https://eprint.iacr.org/2019/1400 | Zbl
[70] E. Ben-Sasson, I. Bentov, Y. Horesh, M. Riabzev, “Fast Reed Solomon interactive oracle proofs of proximity” (Prague, Czech Republic, 2018), 45th Intern. Colloquium ICALP'2018, LIPIcs, 107, 1–17 | DOI | MR
[71] S. Setty, “Spartan: Efficient and general-purpose zkSNARKs without trusted setup”, LNCS, 12172, 2020, 704–737 | MR | Zbl
[72] S. Bowe, J. Grigg, D. Hopwood, Recursive Proof Composition without a Trusted Setup, Cryptology ePrint Archive. Paper 2019/1021, , 2019, 31 pp. https://eprint.iacr.org/2019/1021
[73] D. Boneh, J. Drake, B. Fisch, A. Gabizon, Halo Infinite: Recursive zk-SNARKs from any Additive Polynomial Commitment Scheme, Cryptology ePrint Archive. Paper 2020/1536, , 2020, 66 pp. https://eprint.iacr.org/2020/1536