The number of occurrences of elements from~a~given~subset on~the complication segments of~linear~recurrence sequences
Prikladnaâ diskretnaâ matematika, no. 2 (2023), pp. 30-39
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $v$ be a sequence constructed by the rule $v(i) = f(u_1(i),\ldots, u_k(i))$, $i \geq 0$, where $u_1,\ldots,u_k$ are linear recurrence sequences over the field $P$ with characteristic polynomial $F(x)$. We study the value $N_l(H,v)$, which is equal to the number of occurrences of elements from the subset $H\subset P$ among the elements $v(0),v(1),\ldots,v(l-1)$. We have obtained non-trivial estimates for the value $N_l(H,v)$ and considered special cases when the set $H$ is a subgroup of the group $P^*$, $H$ is the set of all primitive elements of the field $P$. Results are generalized to the case of $r$-tuples for the value $N_l(H,\vec{s},v) = \left|\{i \in \{0,\ldots, l-1\}: v(i + s_1) \in H, \ldots, v(i + s_r) \in H \}\right|$, where $\vec{s} = \left(s_1,\ldots,s_r\right) $ is a set of non-negative integers.
Keywords:
finite fields, filter generators, discrete function curvature, linear recurrence sequences, characters of abelian group.
@article{PDM_2023_2_a2,
author = {A. S. Tissin},
title = {The number of occurrences of elements from~a~given~subset on~the complication segments of~linear~recurrence sequences},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {30--39},
publisher = {mathdoc},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2023_2_a2/}
}
TY - JOUR AU - A. S. Tissin TI - The number of occurrences of elements from~a~given~subset on~the complication segments of~linear~recurrence sequences JO - Prikladnaâ diskretnaâ matematika PY - 2023 SP - 30 EP - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2023_2_a2/ LA - ru ID - PDM_2023_2_a2 ER -
A. S. Tissin. The number of occurrences of elements from~a~given~subset on~the complication segments of~linear~recurrence sequences. Prikladnaâ diskretnaâ matematika, no. 2 (2023), pp. 30-39. http://geodesic.mathdoc.fr/item/PDM_2023_2_a2/