Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2023_2_a0, author = {A. R. Belov}, title = {Characterization of {APN-permutations} in terms {of~Hamming} distance between subgroups of~symmetric~group}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {5--12}, publisher = {mathdoc}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2023_2_a0/} }
TY - JOUR AU - A. R. Belov TI - Characterization of APN-permutations in terms of~Hamming distance between subgroups of~symmetric~group JO - Prikladnaâ diskretnaâ matematika PY - 2023 SP - 5 EP - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2023_2_a0/ LA - ru ID - PDM_2023_2_a0 ER -
A. R. Belov. Characterization of APN-permutations in terms of~Hamming distance between subgroups of~symmetric~group. Prikladnaâ diskretnaâ matematika, no. 2 (2023), pp. 5-12. http://geodesic.mathdoc.fr/item/PDM_2023_2_a0/
[1] Gorodilova A. A., “From cryptanalysis to cryptographic property of a Boolean function”, Prikladnaya Diskretnaya Matematika, 2016, no. 3(33), 16–44 (in Russian) | MR | Zbl
[2] Hou X.-D., “Affinity of permutations of $F^n_2$”, Discr. Appl. Math., 154, Special Issue: Coding and Cryptography Archive (2006), 313–325 | DOI | Zbl
[3] McQuistan M. T., Wolfe A. J., Browning K. A., and Dillon J. F., “An apn permutation in dimension six”, Amer. Math. Soc., 2010, no. 518, 33–42 | MR | Zbl
[4] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Uchebnik, 2-e izd., ispr. i dop., Lan, SPb., 2015, 608 pp.
[5] Fontet M., “Calcul de Centralisateur d'un Grupe de Permutatations”, Bull. Soc. Math. France Mem., 1977, no. 49–50, 53–63 | MR | Zbl
[6] Sridhar M. A., “A fast algorithm for testing isomorphism of permutation networks”, IEEE Trans. Computers, 38:6 (1989), 903–909 | DOI | MR | Zbl
[7] Brodnik A., Malnic̆ A., and Poz̆ar R., The Simultaneous Conjugacy Problem in the Symmetric Group, 2020, arXiv: 1907.07889 | MR
[8] Tsukiyama S., Ide M., Ariyoshi H., and Shirakawa I., “A new algorithm for generating all the maximal independent sets”, SIAM J. Comput., 1977, no. 6, 505–517 | DOI | MR | Zbl
[9] Zhao Y., “The number of independent sets in a regular graph”, Combinatorics, Probability and Computing, 19 (2010), 315–320 | DOI | MR | Zbl