An asymptotics for the number of labelled planar tetracyclic and pentacyclic graphs
Prikladnaâ diskretnaâ matematika, no. 1 (2023), pp. 72-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

A connected graph with a cyclomatic number $k$ is said to be a $k$-cyclic graph. We obtain the formula for the number of labelled non-planar pentacyclic graphs with a given number of vertices, and find the asymptotics of the number of labelled connected planar tetracyclic and pentacyclic graphs with $n$ vertices as $n\to\infty$. We prove that under a uniform probability distribution on the set of graphs under consideration, the probability that the labelled tetracyclic graph is planar is asymptotically equal to 1089/1105, and the probability that the labeled pentacyclic graph is planar is asymptotically equal to 1591/1675.
Keywords: labelled graph, planar graph, tetracyclic graph, pentacyclic graph, block, enumeration, asymptotics, probability.
@article{PDM_2023_1_a3,
     author = {V. A. Voblyi},
     title = {An asymptotics for the number of labelled planar tetracyclic and pentacyclic graphs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {72--79},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2023_1_a3/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - An asymptotics for the number of labelled planar tetracyclic and pentacyclic graphs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2023
SP  - 72
EP  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2023_1_a3/
LA  - ru
ID  - PDM_2023_1_a3
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T An asymptotics for the number of labelled planar tetracyclic and pentacyclic graphs
%J Prikladnaâ diskretnaâ matematika
%D 2023
%P 72-79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2023_1_a3/
%G ru
%F PDM_2023_1_a3
V. A. Voblyi. An asymptotics for the number of labelled planar tetracyclic and pentacyclic graphs. Prikladnaâ diskretnaâ matematika, no. 1 (2023), pp. 72-79. http://geodesic.mathdoc.fr/item/PDM_2023_1_a3/