On equations in free monoids and semigroups with~restrictions on solutions
Prikladnaâ diskretnaâ matematika, no. 1 (2023), pp. 5-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study algorithmic problems for equations in free monoids and semigroups (equations in words and lengths) with additional restrictions on the solutions. It is proved that it is impossible to construct an algorithm that solves an arbitrary system of equations in words and lengths in a free monoid (free semigroup) of rank 2 with an additional constraint on the solution in the form that one of its components belongs to the language of balanced words or the equality of the projections of two components of the solution into a distinguished free generator to determine whether it has a solution. A similar result is obtained for systems of inequalities in words.
Keywords: systems of equations in free monoids and free semigroups, equations in words and lengths, equations with restrictions on solutions.
@article{PDM_2023_1_a0,
     author = {V. G. Durnev and A. I. Zetkina},
     title = {On equations in free monoids and semigroups with~restrictions on solutions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--19},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2023_1_a0/}
}
TY  - JOUR
AU  - V. G. Durnev
AU  - A. I. Zetkina
TI  - On equations in free monoids and semigroups with~restrictions on solutions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2023
SP  - 5
EP  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2023_1_a0/
LA  - ru
ID  - PDM_2023_1_a0
ER  - 
%0 Journal Article
%A V. G. Durnev
%A A. I. Zetkina
%T On equations in free monoids and semigroups with~restrictions on solutions
%J Prikladnaâ diskretnaâ matematika
%D 2023
%P 5-19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2023_1_a0/
%G ru
%F PDM_2023_1_a0
V. G. Durnev; A. I. Zetkina. On equations in free monoids and semigroups with~restrictions on solutions. Prikladnaâ diskretnaâ matematika, no. 1 (2023), pp. 5-19. http://geodesic.mathdoc.fr/item/PDM_2023_1_a0/

[1] Durnev V. G. and Zetkina A. I., “On equations in free monoids with restrictions on solutions”, Aktual'nye Problemy Prikladnoy Matematiki, Informatiki i Mekhaniki, Voronezh, 2022, 1571–1575 (in Russian)

[2] Durnev V. G. and Zetkina A. I., “Algorithmic problems for equations in free groups and semigroups with constraints on solutions”, Vseros. nauch. konf. “Matematicheskie Osnovy Informatiki i Informatsionno-Kommunikatsionnykh Sistem”, TvSU, Tver, 2021, 25–41 (in Russian) | DOI

[3] Peryazev N. A., “Positive theories of free monoids”, Algebra i Logika, 32:2 (1993), 148–159 (in Russian) | MR

[4] Kosovskiy N. K., “Some properties of solutions of equations in a free semigroup”, Zapiski Nauch. Seminarov Leningr. Otd. Mat. In-ta im. V. A. Steklova, 32, 1972, 21–28 (in Russian) | MR

[5] Durnev V. G., “Undecidability of the positive ${\forall \exists^3}$-theory of a free semigroup”, Sib. Matem. Zhurn., 36:5 (1995), 1067–1080 (in Russian) | MR

[6] Khmelevskiy Yu. I., Equations in a free semigroup, Nauka Publ., M., 1971, 218 pp. (in Russian)

[7] Matiyasevich Yu. V., “Connection of systems of equations in words and lengths with Hilbert's 10th problem”, Zapiski Nauch. Seminarov Leningr. Otd. Mat. In-ta im. V. A. Steklova, 8, 1968, 132–143 (in Russian)

[8] Kosovskiy N. K., “On sets representable as solutions of equations in words and lengths”, Vtoraya Vsesoyuz. Konf. po Matem. Logike, M., 1972, 23 (in Russian)

[9] Kosovskiy N. K., “On the solution of systems consisting simultaneously of equations in words and inequalities in word lengths”, Zapiski Nauch. Seminarov Leningr. Otd. Mat. In-ta im. V. A. Steklova, 33, 1973, 24–29 (in Russian)

[10] Durnev V. G., “On equations on free semigroups and groups”, Matem. Zametki, 16:5 (1974), 717–724 (in Russian) | MR

[11] Buchi J. R. and Senger S., “Definability in the existential theory of concatenation”, Z. Math. Log. und Grundl. Math., 34:4 (1988), 337–342 | DOI | MR

[12] Makanin G. S., “The problem of solvability of equations in a free semigroup”, DAN USSR, 233:2 (1977), 287–290 (in Russian) | MR

[13] Makanin G. S., “The problem of solvability of equations in a free semigroup”, Matem. Sbor., 103 (145):2 (6) (1977), 147–236 (in Russian) | MR

[14] Makanin G. S., “Equations in free groups”, Izv. AN USSR. Ser. Matem., 46:6 (1982), 1199–1274 (in Russian) | MR

[15] Durnev V. G., “Positive theory of a free semigroup”, DAN USSR, 211:4 (1973), 772–774 (in Russian) | MR

[16] Durnev V. G., “On positive formulas on free semigroups”, Sib. Matem. Zhurn., 25:5 (1974), 1131–1137 (in Russian) | MR

[17] Vazhenin Yu. M. and Rozenblat B. V., “Decidability of the positive theory of a free countably generated semigroup”, Matem. Sbornik, 116:1 (1981), 120–127 (in Russian) | MR

[18] Makanin G. S., “Decidability of the universal and positive theories of a free group”, Izv. AN USSR. Ser. Matem., 1984, no. 4, 735–749 (in Russian)

[19] Merzlyakov Yu. I., “Positive formulas on free groups”, Algebra i Logika, 5:4 (1966), 25–42 (in Russian)

[20] V. D. Mazurov et al. (eds.), Kourovka Notebook, Novosibirsk, 1990, 126 pp. (in Russian)

[21] Malkhasyan A. Sh., “On the solvability in subgroups of equations in a free group”, Prikladnaya Matematika, 1986, no. 2, 42–47 (in Russian) | MR

[22] Schulz K. U., “Makanin's algorithm for word equations — two improvements and a generalization”, LNCS, 572, 1990, 85–150 | MR

[23] Diekert V., Gutierrez C., and Hagenah C., “The existential theory of equations with rational constraints in free groups is PSPACE-complete”, LNCS, 2010, 2001, 170–182 | MR

[24] Diekert V., Gutierrez C., and Hagenah C., “The existential theory of equations with rational constraints in free groups is PSPACE-complete”, Information and Computation, 202 (2005), 105–140 | DOI | MR

[25] Matiyasevich Yu. V., “Diophantine property of enumerable sets”, DAN USSR, 130:3 (1970), 495–498 (in Russian)

[26] Robinson J., “Existential definability in arithmetic”, Trans. Amer. Math. Soc., 72 (1952), 437–439 | DOI | MR