Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_4_a9, author = {A. N. Rybalov}, title = {The generic complexity of~the~graph~triangulation~problem}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {105--111}, publisher = {mathdoc}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_4_a9/} }
A. N. Rybalov. The generic complexity of~the~graph~triangulation~problem. Prikladnaâ diskretnaâ matematika, no. 4 (2022), pp. 105-111. http://geodesic.mathdoc.fr/item/PDM_2022_4_a9/
[1] Garey M. and Johnson D., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, 1979, 340 pp. | MR
[2] Kapovich I., Miasnikov A., Schupp P., and Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR
[3] Gimadi E. H., Glebov N. I., and Perepelitsa V. A., “Algorithms with bounds for problems of discrete optimization”, Problemy Kibernetiki, 31 (1975), 35–42 (in Russian)
[4] Blum M., “How to prove a theorem so no one else can claim it”, Proc. Intern. Congress Math. (Berkeley, CA, 1986), 1444–1451 | MR
[5] Myasnikov A. G. and Rybalov A. N., “Generic complexity of undecidable problems”, J. Symbolic Logic, 73:2 (2008), 656–673 | DOI | MR
[6] Rybalov A. N., “On the strongly generic undecidability of the Halting Problem”, Theor. Comput. Sci., 377 (2007), 268–270 | DOI | MR
[7] Rybalov A. N., “Generic complexity of Presburger arithmetic”, Theory Comput. Systems, 46:1 (2010), 2–8 | DOI | MR
[8] Rybalov A. N., “Generic complexity of the Diophantine problem”, Groups Complexity Cryptology, 5:1 (2013), 25–30 | DOI | MR
[9] Rybalov A. N., “Generic hardness of the Boolean satisfiability problem”, Groups Complexity Cryptology, 9:2 (2017), 151–154 | MR
[10] Rybalov A. N., “On generic complexity of the graph clustering problem”, Prikladnaya Diskretnaya Matematika, 2019, no. 46, 72–77 (in Russian)
[11] Rybalov A. N., “The general complexity of the problem to recognize Hamiltonian paths”, Prikladnaya Diskretnaya Matematika, 2021, no. 53, 120–126 (in Russian)
[12] Impagliazzo R. and Wigderson A., “P $=$ BPP unless E has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR
[13] Rybalov A. N., “On generic complexity of the validity problem for Boolean formulas”, Prikladnaya Diskretnaya Matematika, 2016, no. 2(32), 119–126 (in Russian)