Effective algorithm for finding shortest paths in~dense~Gaussian networks
Prikladnaâ diskretnaâ matematika, no. 4 (2022), pp. 94-104

Voir la notice de l'article provenant de la source Math-Net.Ru

As a promising topology of networks on a chip, we consider a family of Dense Gaussian Networks, which are optimal circulant degree four graphs of the form $C(D^2+(D+1)^2; D, D+1)$. For this family, an algorithm for finding the shortest paths between graph vertices is proposed, which uses relative addressing of vertices and, unlike a number of the known algorithms, allows to calculate the shortest paths without using the coordinates of neighboring lattice zeros in a dense tessellation of graphs on the $\mathbb{Z}^2$ plane. This reduces the memory and execution time costs compared to other algorithms when the new algorithm is implemented on a network-on-chip with a Dense Gaussian Network topology.
Keywords: Dense Gaussian Networks, circulant graphs, shortest paths, networks on a chip.
@article{PDM_2022_4_a8,
     author = {E. A. Monakhova and O. G. Monakhov},
     title = {Effective algorithm for finding shortest paths {in~dense~Gaussian} networks},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {94--104},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2022_4_a8/}
}
TY  - JOUR
AU  - E. A. Monakhova
AU  - O. G. Monakhov
TI  - Effective algorithm for finding shortest paths in~dense~Gaussian networks
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2022
SP  - 94
EP  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2022_4_a8/
LA  - ru
ID  - PDM_2022_4_a8
ER  - 
%0 Journal Article
%A E. A. Monakhova
%A O. G. Monakhov
%T Effective algorithm for finding shortest paths in~dense~Gaussian networks
%J Prikladnaâ diskretnaâ matematika
%D 2022
%P 94-104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2022_4_a8/
%G ru
%F PDM_2022_4_a8
E. A. Monakhova; O. G. Monakhov. Effective algorithm for finding shortest paths in~dense~Gaussian networks. Prikladnaâ diskretnaâ matematika, no. 4 (2022), pp. 94-104. http://geodesic.mathdoc.fr/item/PDM_2022_4_a8/