Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_4_a7, author = {A. A. Lobov and M. B. Abrosimov}, title = {About uniqueness of the minimal $1$-edge extension of~hypercube $Q_4$}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {84--93}, publisher = {mathdoc}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_4_a7/} }
A. A. Lobov; M. B. Abrosimov. About uniqueness of the minimal $1$-edge extension of~hypercube $Q_4$. Prikladnaâ diskretnaâ matematika, no. 4 (2022), pp. 84-93. http://geodesic.mathdoc.fr/item/PDM_2022_4_a7/
[1] Padua D. A., Encyclopedia of Parallel Computing, Springer, N.Y., 2011
[2] Abrosimov M. B., Graph Models of Fault Tolerance, SSU Publ., Saratov, 2012, 192 pp. (in Russian)
[3] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR
[4] Harary F. and Hayes J. P., “Node fault tolerance in graphs”, Networks, 27 (1996), 19–23 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[5] Harary F. and Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR
[6] Lobov A. A. and Abrosimov M. B., “On the vertex 1-extension of a hypercube”, Komp'yuternye nauki i informatsionnye tekhnologii, “Nauka” Publ., Saratov, 2018, 249–251 (in Russian)
[7] Zhang Y., Zhao S., and Meng J., “Edge fault tolerance of graphs with respect to $\lambda$2-optimal property”, Theor. Comput. Sci., 783 (2019), 95–104 | DOI | MR
[8] Liu H. and Cheng D., “Structure fault tolerance of balanced hypercubes”, Theor. Comput. Sci., 845 (2020), 198–207 | DOI | MR
[9] Bogomolov A. M. and Saliy V. N., Algebraic Foundations of the Discrete Systems Theory, Nauka Publ., M., 1997, 368 pp. (in Russian) | MR
[10] Harary F., Graph Theory, Addison-Wesley, 1969, 274 pp. | MR
[11] Harary F., Hayes J. P., and Wu H.-J., “A survey of the theory of hypercube graphs”, Computers Math. with Appl., 15:4 (1988), 277–289 | DOI | MR
[12] Abrosimov M. B., “On the complexity of some problems related to graph extensions”, Math. Notes, 88:5 (2010), 619–625 | DOI | MR
[13] Abrosimov M. B., Kamil I. A. K., and Lobov A. A., “Construction of all nonisomorphic minimal vertex extensions of the graph by the method of canonical representatives”, Izv. Saratov Univ. (N. S.), Ser. Matematika. Mekhanika. Informatika, 19:4 (2019), 479–486 (in Russian) | MR
[14] Abrosimov M. B., Sudani Kh. Kh. K., and Lobov A. A., “Construction of all minimal edge extensions of the graph with isomorphism rejection”, Izv. Saratov Univ. (N. S.), Ser. Matematika. Mekhanika. Informatika, 20:1 (2020), 105–115 (in Russian) | MR