Keywords: differential characteristic, differential method.
@article{PDM_2022_4_a4,
author = {A. A. Dmukh and D. O. Pasko},
title = {Search for differences for {Alzette} {S-Box} with maximum or close to maximum differential characteristic probability},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {40--56},
year = {2022},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2022_4_a4/}
}
TY - JOUR AU - A. A. Dmukh AU - D. O. Pasko TI - Search for differences for Alzette S-Box with maximum or close to maximum differential characteristic probability JO - Prikladnaâ diskretnaâ matematika PY - 2022 SP - 40 EP - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/PDM_2022_4_a4/ LA - ru ID - PDM_2022_4_a4 ER -
A. A. Dmukh; D. O. Pasko. Search for differences for Alzette S-Box with maximum or close to maximum differential characteristic probability. Prikladnaâ diskretnaâ matematika, no. 4 (2022), pp. 40-56. http://geodesic.mathdoc.fr/item/PDM_2022_4_a4/
[1] Beierle C., Biryukov A., Cardoso dos Santos L., et al., Alzette: A 64-bit ARX-box, Cryptology Archive. Report 2019/1378, , 2019 https://eprint.iacr.org/2019/1378
[2] Canteaut A., Duval S., Leurent G., et al., Saturnin: a suite of lightweight symmetric algorithms for post-quantum security https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/saturnin-spec-round2.pdf
[3] Dinu D., Perrin L., Udovenko A., et al., “Design strategies for ARX with provable bounds: Sparx and LAX”, LNCS, 10031, 2016, 484–513 | MR
[4] Biryukov A., Velichkov V., and Corre Y. L., “Automatic search for the best trails in ARX: Application to block cipher Speck”, LNCS, 9783, 2016, 289–310 | MR
[5] Malyshev F. M., “Probabilistic characteristics of differential and linear relations for nonhomogeneous linear medium”, Matematicheskie Voprosy Kriptografii, 10:1 (2019), 41–72 (in Russian) | MR
[6] Wallèn J., On the differential and linear properties of addition, Research Report A84, Helsinki University of Technology, Laboratory for Theoretical Computer Science, Espoo, Finland, 2003, 58 pp.
[7] Malyshev F. M. and Trifonov D. I., “Diffusion properties of XSLP-ciphers”, Matematicheskie Voprosy Kriptografii, 7:3 (2016), 47–60 (in Russian) | MR