Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_4_a2, author = {S. A. Novoselov}, title = {On ideal class group computation of imaginary multiquadratic fields}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {22--30}, publisher = {mathdoc}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_4_a2/} }
S. A. Novoselov. On ideal class group computation of imaginary multiquadratic fields. Prikladnaâ diskretnaâ matematika, no. 4 (2022), pp. 22-30. http://geodesic.mathdoc.fr/item/PDM_2022_4_a2/
[1] Buchmann J. and Paulus S., “A one way function based on ideal arithmetic in number fields”, LNCS, 1294, 1997, 385–394
[2] Biehl I., Buchmann J., Hamdy S., and Meyer A., “A signature scheme based on the intractability of computing roots”, Des. Codes Cryptogr., 25 (2002), 223–236 | DOI | MR
[3] Meyer A., Neis S., and Pfahler T., “First implementation of cryptographic protocols based on algebraic number fields”, LNCS, 2119, 2001, 84–103
[4] Lyubashevsky V., Peikert C., and Regev O., “On ideal lattices and learning with errors over rings”, LNCS, 6110, 2010, 1–23 | MR
[5] Lyubashevsky V. and Micciancio D., “Generalized compact knapsacks are collision resistant”, LNCS, 4052, 2006, 144–155 | MR
[6] Bauch J., Bernstein D. J., de Valence H., et al., “Short generators without quantum computers: the case of multiquadratics”, Ann. Intern. Conf. on the Theory and Applications of Cryptographic Techniques, LNSC, 10210, 2017, 27–59 https://multiquad.cr.yp.to/software.html | MR
[7] Pellet-Mary A., Hanrot G., and Stehlé D., “Approx-SVP in ideal lattices with pre-processing”, LNCS, 11477, 2019, 685–716 | MR
[8] Bernard O. and Roux-Langlois A., “Twisted-PHS — Using the product formula to solve Approx-SVP in ideal lattices”, LNCS, 12492, 2020, 349–380 | MR
[9] Buchmann J., “A subexponential algorithm for the determination of class groups and regulators of algebraic number fields”, Séminaire de Théorie des Nombres (Paris 1988/1989), Progr. Math., 91, Birkhäuser, Boston, 1990, 27–41 | MR
[10] Cohen H., Diaz Y Diaz F., and Olivier M., “Subexponential algorithms for class group and unit computations”, J. Symbolic Computation, 24 (1997), 433–441 | DOI | MR
[11] Biasse J.-F., An L(1/3) Algorithm for Discrete Logarithm Computation and Principality Testing in Certain Number Fields, 2012, arXiv: 1204.1292
[12] Biasse J.-F. and van Vredendaal C., “Fast multiquadratic S-unit computation and application to the calculation of class groups”, The Open Book Series, 2 (2019), 103–118 https://scarecryptow.org/publications/multiclass.html | DOI | MR
[13] Lenstra A. K., Lenstra H. W., and Lovasz L., “Factoring polynomials with rational coefficients”, Math. Ann., 261 (1982), 515–534 | DOI | MR
[14] Bach E., “Explicit bounds for primality testing and related problems”, Mathematics of Computation, 55:191 (1990), 355–380 | DOI | MR
[15] Grenié L. and Molteni G., “Explicit bounds for primality testing and related problems”, Mathematics of Computation, 2018, no. 313, 2483–2511
[16] Cohen H., A Course in Computational Algebraic Number Theory, Springer Verlag, Berlin, 1993 | MR
[17] Bach E., “Improved approximations for Euler products”, Number Theory, CMS Conf. Proc., 15, 1995, 13–28 | MR
[18] Belabas K. and Friedman E., “Computing the residue of the Dedekind zeta function”, Mathematics of Computation, 84:291 (2015), 357–369 | DOI | MR
[19] Fieker C., Hart W., Hofmann T., and Johansson F., “Nemo/Hecke: computer algebra and number theory packages for the Julia programming language”, Proc. ISSAC'17, 2017, 157–164 https://www.thofma.com/Hecke.jl/dev/ | MR
[20] Bezanson J., Edelman A., Karpinski S., and Shah V. B., “Julia: A fresh approach to numerical computing”, SIAM Review, 59:1 (2017), 65–98 | DOI | MR
[21] Cohen H., Advanced Topics in Computational Number Theory, Springer Science + Business Media, N.Y., 2000 | MR
[22] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.4), 2022 https://www.sagemath.org