Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_3_a5, author = {A. N. Rybalov}, title = {The generic complexity of~the~bounded problem of graphs clustering}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {91--97}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_3_a5/} }
A. N. Rybalov. The generic complexity of~the~bounded problem of graphs clustering. Prikladnaâ diskretnaâ matematika, no. 3 (2022), pp. 91-97. http://geodesic.mathdoc.fr/item/PDM_2022_3_a5/
[1] Kr̀ivanek M. and Morávek J., “NP-hard problems in hierarchical-tree clustering”, Acta Informatica, 23 (1986), 311–323 | DOI | MR | Zbl
[2] Bansal N., Blum A., and Chawla S., “Correlation clustering”, Machine Learning, 56 (2004), 89–113 | DOI | MR | Zbl
[3] Shamir R., Sharan R., and Tsur D., “Cluster graph modification problems”, Discrete Appl. Math., 144:1–2 (2004), 173–182 | DOI | MR | Zbl
[4] Ageev A. A., Il'ev V. P., Kononov A. V., and Talevnin A. S., “Computational complexity of the graph approximation problem”, J. Appl. Ind. Math., 1:1 (2007), 1–8 | DOI | MR | MR
[5] Il'ev V. P. and Il'eva S. D., “On problems of graph clustering”, Vestnik Omskogo Universiteta, 2016, no. 2, 16–18 (in Russian)
[6] Il'ev A. V. and Il'ev V. P., “On a semi-superwized graph clustering problem”, Prikladnaya Diskretnaya Matematika, 2018, no. 42, 66–75 (in Russian) | MR | Zbl
[7] Talevnin A. S., “On the complexity of the graph approximation problem”, Vestnik Omskogo Universiteta, 2004, no. 4, 22–24 (in Russian)
[8] Impagliazzo R. and Wigderson A., “P $=$ BPP unless E has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR
[9] Kapovich I., Miasnikov A., Schupp P., and Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[10] Gimadi E. H., Glebov N. I., and Perepelitsa V. A., “Algorithms with bounds for problems of discrete optimization”, Problemy Kibernetiki, 31 (1975), 35–42 (in Russian)
[11] Myasnikov A. G. and Rybalov A.N., “Generic complexity of undecidable problems”, J. Symbolic Logic, 73:2 (2008), 656–673 | DOI | MR | Zbl
[12] Rybalov A. N., “On the strongly generic undecidability of the Halting Problem”, Theor. Comput. Sci., 377 (2007), 268–270 | DOI | MR | Zbl
[13] Rybalov A. N., “Generic complexity of Presburger arithmetic”, Theory Comput. Systems, 46:1 (2010), 2–8 | DOI | MR | Zbl
[14] Rybalov A. N., “Generic complexity of the Diophantine problem”, Groups Complexity Cryptology, 5:1 (2013), 25–30 | DOI | MR | Zbl
[15] Rybalov A. N., “Generic hardness of the Boolean satisfiability problem”, Groups Complexity Cryptology, 9:2 (2017), 151–154 | MR | Zbl
[16] Rybalov A. N., “On generic complexity of the graph clustering problem”, Prikladnaya Diskretnaya Matematika,, 2019, no. 46, 72–77 (in Russian) | Zbl
[17] Rybalov A. N., “The general complexity of the problem to recognize Hamiltonian paths”, Prikladnaya Diskretnaya Matematika, 2021, no. 53, 120–126 (in Russian) | Zbl