Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_3_a4, author = {V. V. Vysotskaya and I. V. Chizhov}, title = {The security of the code-based signature scheme based on the {Stern} identification protocol}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {67--90}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_3_a4/} }
TY - JOUR AU - V. V. Vysotskaya AU - I. V. Chizhov TI - The security of the code-based signature scheme based on the Stern identification protocol JO - Prikladnaâ diskretnaâ matematika PY - 2022 SP - 67 EP - 90 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2022_3_a4/ LA - en ID - PDM_2022_3_a4 ER -
V. V. Vysotskaya; I. V. Chizhov. The security of the code-based signature scheme based on the Stern identification protocol. Prikladnaâ diskretnaâ matematika, no. 3 (2022), pp. 67-90. http://geodesic.mathdoc.fr/item/PDM_2022_3_a4/
[1] Shor P. V., “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, SIAM J. Computing, 26:5 (1997), 1484–1509 | DOI | MR | Zbl
[2] NIST PQC Call for Proposals, , 2016 https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
[3] Lee W., Kim Y.-S., Lee Y.-W., and No J.-S., Post quantum signature scheme based on modified Reed — Muller code pqsigRM, First round submission to the NIST post-quantum cryptography call, 2017 https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/pqsigRM.zip
[4] Fukushima K., Roy P. S., Xu R., et al., Supporting documentation of RaCoSS (Random Code-based Signature Scheme), First round submission to the NIST post-quantum cryptography call, 2017 https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/RaCoSS.zip
[5] Aragon N., Gaborit P., Hauteville A., et al., RankSign — a signature proposal for the NIST's call, First round submission to the NIST post-quantum cryptography call, 2017 https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/RankSign.zip
[6] Debris-Alazard T. and Tillich J.-P., “Two attacks on rank metric code-based schemes: RankSign and an IBE scheme”, LNCS, 11272, 2018, 62–92 | MR | Zbl
[7] Lee Y., Lee W., Kim Y. S., and No J.-S., “Modified pqsigRM: RM code-based signature scheme”, IEEE Access, 8 (2020), 177506–177518 | DOI
[8] Roy P. S., Morozov K., Fukushima K., et al., “Code-based signature scheme without trapdoors”, IEICE Tech. Rep., 118:151 (2018), 17–22
[9] Xagawa K., Practical Attack on RaCoSS-R, Cryptology Archive, Report 2018/831, , 2018 http://eprint.iacr.org/
[10] Kabatianskii G., Krouk E., and Smeets B., “A digital signature scheme based on random error-correcting codes”, LNCS, 1355, 1997, 161–167 | MR | Zbl
[11] Cayrel P.-L., Otmani A., and Vergnaud D., “On Kabatianskii — Krouk — Smeets signatures”, LNCS, 4547, 2007, 237–252 | MR
[12] Stern J., Can one design a signature scheme based on error-correcting codes?, LNCS, 917, 1995, 424–426 | MR | Zbl
[13] Courtois N., Finiasz M., and Sendrier N., “How to achieve a McEliece-based digital signature scheme”, LNCS, 2248, 2001, 157–174 | MR | Zbl
[14] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 42–44 (1978), 114–116
[15] Niederreiter H., “Knapsack-type cryptosystems and algebraic coding theory”, Problems Control Inform. Theory, 15:2 (1986), 159–166 | MR | Zbl
[16] Dallot L., “Towards a concrete security proof of Courtois, Finiasz and Sendrier signature scheme”, LNCS, 4945, 2008, 65–77 | Zbl
[17] Debris-Alazard T., Sendrier N., and Tillich J.-P., “Wave: a new family of trapdoor one-way preimage sampleable functions based on codes”, LNCS, 11921, 2019, 21–51 | Zbl
[18] Fiat A. and Shamir A., “How to prove yourself: practical solutions to identification and signature problems”, LNCS, 263, 1987, 186–194 | MR | Zbl
[19] Stern J., “A new identification scheme based on syndrome decoding”, LNCS, 773, 1994, 13–21 | Zbl
[20] Jain A., Krenn S., Pietrzak K., and Tentes A., “Commitments and efficient zero-knowledge proofs from learning parity with noise”, LNCS, 7658, 2012, 663–680 | MR | Zbl
[21] Cayrel P.-L., Véron P., and El Y. A. S. M., “A zero-knowledge identification scheme based on the $q$-ary SD problem”, LNCS, 6544, 2010, 171–186 | MR
[22] Lyubashevsky V., “Lattice signatures without trapdoors”, LNCS, 7237, 2012, 738–755 | MR | Zbl
[23] Aragon N., Blazy O., Gaborit P., et al., “Durandal: a rank metric based signature scheme”, LNCS, 11478, 2019, 728–758 | MR | Zbl
[24] Overbeck R. and Sendrier N., “Code-based cryptography”, Post-Quantum Cryptography, 2009, 95–145 | DOI | MR | Zbl
[25] Roy P. S., Morozov K., Fukushima K., and Kiyomoto S., Evaluation of Code-Based Signature Schemes, Cryptology Archive, Report 2019/544, , 2019 https://eprint.iacr.org/
[26] El Y. A. S. M., Cayrel P.-L., El B. R., and Hoffmann G., “Code-based identification and signature schemes in software”, LNCS, 8128, 2013, 122–136
[27] Pointcheval D. and Stern J., “Security proofs for signature schemes”, LNCS, 1070, 1996, 387–398 | MR | Zbl
[28] Berlekamp E., McEliece R., and van Tilborg H., “On the inherent intractability of certain coding problems (Corresp.)”, IEEE Trans. Inform. Theory, 24:3 (1978), 384–386 | DOI | MR | Zbl
[29] Both L. and May A., “Decoding linear codes with high error rate and its impact for LPN security”, LNCS, 10786, 2018, 25–46 | MR | Zbl
[30] Lebedev P. A., “Comparison of old and new cryptographic hash function national standards of Russian Federation on CPUs and NVIDIA GPUs”, Mat. Vopr. Kriptogr., 4:2 (2013), 73–80 | DOI