A randomized analog of Chaum --- van Antwerpen undeniable signature
Prikladnaâ diskretnaâ matematika, no. 3 (2022), pp. 40-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an elliptic curve modification of the undeniable signature introduced by D. Chaum and H. van-Antwerpen. The signature generation algorithm is supplemented with a preliminary stage of randomization. For signature verification and disavowal protocols, two options are offered. Theorems showing that these protocols meet their purpose have been proven. A method for converting an undeniable signature into a regular digital signature is described, illustrated by the Schnorr electronic signature scheme as an example.
Keywords: digital signature, undeniable signature, elliptic curve.
@article{PDM_2022_3_a2,
     author = {P. A. Polyschuk and A. V. Cheremushkin},
     title = {A randomized analog of {Chaum} --- van {Antwerpen} undeniable signature},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {40--51},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2022_3_a2/}
}
TY  - JOUR
AU  - P. A. Polyschuk
AU  - A. V. Cheremushkin
TI  - A randomized analog of Chaum --- van Antwerpen undeniable signature
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2022
SP  - 40
EP  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2022_3_a2/
LA  - ru
ID  - PDM_2022_3_a2
ER  - 
%0 Journal Article
%A P. A. Polyschuk
%A A. V. Cheremushkin
%T A randomized analog of Chaum --- van Antwerpen undeniable signature
%J Prikladnaâ diskretnaâ matematika
%D 2022
%P 40-51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2022_3_a2/
%G ru
%F PDM_2022_3_a2
P. A. Polyschuk; A. V. Cheremushkin. A randomized analog of Chaum --- van Antwerpen undeniable signature. Prikladnaâ diskretnaâ matematika, no. 3 (2022), pp. 40-51. http://geodesic.mathdoc.fr/item/PDM_2022_3_a2/

[1] Harn L. and Yang S., “Group-oriented undeniable signature schemes without the assistance of a mutually trusted party”, LNCS, 718, 1993, 133–142 | Zbl

[2] Wang G. and Qing S., “A threshold undeniable signature scheme without a trusted party”, J. Software, 13:9 (2002), 1757–1764 | MR

[3] Chaum D., van Heijst E., and Pfitzmann B., “Cryptographically strong undeniable signatures, unconditionally secure for the signer”, LNCS, 576, 1992, 470–484 | Zbl

[4] Zhu H., Universal Undeniable Signatures, ePrint Archive, , 2004 eprint.iacr.org/2004/005

[5] Boyar J., Chaum D., Damgard I., and Pedersen T., “Convertible undeniable signatures”, LNCS, 537, 1991, 189–205 | Zbl

[6] Gennaro R., Krawczyk H., and Rabin T., “RSA-based undeniable signature”, LNCS, 1294, 1997, 132–148

[7] Horng S.-J., Tzeng S.-F., Fan P., et al., “Secure convertible undeniable signature scheme using extended Euclidean algorithm without random oracles”, KSII Trans. Internet Inform. Systems, 7:6 (2013) | DOI

[8] Libert Q. and Quisquater J.-J., Identity Based Undeniable Signatures, ePrint Archive, , 2003 eprint.iacr.org/2003/206 | MR

[9] Gennaro R., Krawczyk Y. M., and Rabin T. D., Udeniable Certificates for Digital Signature Verification, United States Patent No US 6292897 B1, Sep. 18, 2001

[10] Chaum D., “Designated confirmer signatures”, LNCS, 950, 1994, 86–91

[11] Okamoto T., “Designated confirmer signatures and public-key encryption are equivalent”, LNCS, 839, 1994, 61–74 | Zbl

[12] Duan S., “Certificateless undeniable signature scheme”, Inform. Sci., 178:3 (2008), 742–755 | DOI | MR | Zbl

[13] Chaum D., “Zero-knowledge undeniable signatures”, LNCS, 473, 1991, 458–464 | MR

[14] Chaum D. and Van-Antwerpen H., “Undeniable signature”, LNCS, 435, 1990, 212–216 | Zbl

[15] Mao W., New Zero-knowledge Undeniable Signatures — Forgery of Signature Equivalent to Factorisation, ePrint Archive, , 2001 eprint.iacr.org/2001/011

[16] Pandey A. and Gupta I., “A new undeniable signature scheme on general linear group over group ring”, J. Discrete Math. Sci. Cryptography, 2020, 1–13 | DOI | Zbl

[17] Thomas T. and Lal A. K., Undeniable Signature Schemes Using Braid Groups, arXiv: 0601049

[18] Thomas T. and Lal A. K., “A zero-knowledge undeniable signature scheme in non-Abelian group setting”, Intern. J. Network Security, 6:3 (2008), 265–269

[19] Jao J. and Soukharev V., “Isogeny-based quantum-resistant undeniable signatures”, LNSC, 8772, 2014, 160–179 | MR | Zbl

[20] Tian M. and Huang L., Efficient Identity-Based Signature from Lattices, , 2016 https://hal.inria.fr/hal-01370379 | MR

[21] Aleksandrova E. B. and Shkorkina E. N., “Elliptic curve undeniable signature for server verification in outsource computations”, Problemy Informatsionnoy Bezopasnosti. Komp'yuternye Sistemy, SPbTU Publ., 2018, 97–101 (in Russian)

[22] GOST R 34.10-2012. Informatiom technology. Cryptographic protection information. Electronic digital signature process, 2012 (in Russian) https://docs.cntd.ru/document/1200095034

[23] Schnorr C. P., “Efficient identification and signature for smart cards”, LNCS, 435, 1990, 235–251 | MR