A randomized analog of Chaum --- van Antwerpen undeniable signature
Prikladnaâ diskretnaâ matematika, no. 3 (2022), pp. 40-51

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an elliptic curve modification of the undeniable signature introduced by D. Chaum and H. van-Antwerpen. The signature generation algorithm is supplemented with a preliminary stage of randomization. For signature verification and disavowal protocols, two options are offered. Theorems showing that these protocols meet their purpose have been proven. A method for converting an undeniable signature into a regular digital signature is described, illustrated by the Schnorr electronic signature scheme as an example.
Keywords: digital signature, undeniable signature, elliptic curve.
@article{PDM_2022_3_a2,
     author = {P. A. Polyschuk and A. V. Cheremushkin},
     title = {A randomized analog of {Chaum} --- van {Antwerpen} undeniable signature},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {40--51},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2022_3_a2/}
}
TY  - JOUR
AU  - P. A. Polyschuk
AU  - A. V. Cheremushkin
TI  - A randomized analog of Chaum --- van Antwerpen undeniable signature
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2022
SP  - 40
EP  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2022_3_a2/
LA  - ru
ID  - PDM_2022_3_a2
ER  - 
%0 Journal Article
%A P. A. Polyschuk
%A A. V. Cheremushkin
%T A randomized analog of Chaum --- van Antwerpen undeniable signature
%J Prikladnaâ diskretnaâ matematika
%D 2022
%P 40-51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2022_3_a2/
%G ru
%F PDM_2022_3_a2
P. A. Polyschuk; A. V. Cheremushkin. A randomized analog of Chaum --- van Antwerpen undeniable signature. Prikladnaâ diskretnaâ matematika, no. 3 (2022), pp. 40-51. http://geodesic.mathdoc.fr/item/PDM_2022_3_a2/