Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_3_a1, author = {Yu. V. Kosolapov and E. A. Lelyuk}, title = {On the structural security of a {McEliece-type} cryptosystem based on the sum of tensor products of~binary {Reed~---} {Muller} codes}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {22--39}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_3_a1/} }
TY - JOUR AU - Yu. V. Kosolapov AU - E. A. Lelyuk TI - On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of~binary Reed~--- Muller codes JO - Prikladnaâ diskretnaâ matematika PY - 2022 SP - 22 EP - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2022_3_a1/ LA - ru ID - PDM_2022_3_a1 ER -
%0 Journal Article %A Yu. V. Kosolapov %A E. A. Lelyuk %T On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of~binary Reed~--- Muller codes %J Prikladnaâ diskretnaâ matematika %D 2022 %P 22-39 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2022_3_a1/ %G ru %F PDM_2022_3_a1
Yu. V. Kosolapov; E. A. Lelyuk. On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of~binary Reed~--- Muller codes. Prikladnaâ diskretnaâ matematika, no. 3 (2022), pp. 22-39. http://geodesic.mathdoc.fr/item/PDM_2022_3_a1/
[1] Post-Quantum Cryptography, , National Institute of Standards and Technology (NIST), 2021 http://csrc.nist.gov/projects/post-quantum-cryptography
[2] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 1978, 42–44
[3] , 2020 https://classic.mceliece.org/nist/mceliece-20201010.pdf
[4] Sidel'nikov V. M., “Open coding based on Reed — Muller binary codes”, Discr. Math. Appl., 4:3 (1994), 191–207 | MR | Zbl
[5] Niederreiter H., “Knapsack-type cryptosystems and algebraic coding theory”, Problems Control Inform. Theory, 15:2 (1986), 159–166 | MR | Zbl
[6] Berger T. and Loidreau P., “How to mask the structure of codes for a cryptographic use”, Des. Codes Cryptogr., 35:1 (2005), 63–79 | DOI | MR | Zbl
[7] Janwa H. and Moreno O., “McEliece public cryptosystem using algebraic-geometric codes”, Des. Codes Cryptogr., 8 (1996), 293–307 | DOI | MR | Zbl
[8] Couvreur A., Marquez-Corbella I., and Pellikaan R., “Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes”, IEEE Trans. Inform. Theory, 8:63 (2017), 5404–5418 | DOI | MR | Zbl
[9] Chizhov I. V. and Borodin M. A., “Effective attack on the McEliece cryptosystem based on Reed — Muller codes”, Discr. Math. Appl., 24:5 (2014), 273–280 | MR | Zbl
[10] Wieschebrink C., “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes”, LNCS, 6061, 2010, 61–72 | MR | Zbl
[11] Sidel'nikov V. M. and Shestakov S. O., “On an encoding system constructed on the basis of generalized Reed — Solomon codes”, Discr. Math. Appl., 4:2 (1992), 439–444 | MR | Zbl
[12] Deundyak V. M., Druzhinina M. A., and Kosolapov Yu. V., “Modification of the Sidelnikov — Shestakov cryptanalytic algorithm for generalized Reed — Solomon codes and its software implementation”, Izv. Vuzov. Severo-Kavkazskiy Region. Ser. Tekhnicheskie Nauki, 2006, no. 4, 15–19 (in Russian)
[13] Minder L. and Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, LNCS, 4515, 2007, 347–360 | MR | Zbl
[14] Borodin M. A. and Chizhov I. V., “Classification of Hadamard products of codimension 1 subcodes of Reed — Muller codes”, Diskretnaya Matematika, 32:1 (2020), 115–134 (in Russian) | MR
[15] Wieschebrink C., “Two NP-complete problems in coding theory with an application in code based cryptography”, IEEE Intern. Symp. Inform. Theory (2006), 1733–1737
[16] Couvreur A., Gaborit P., Gauthier-Umana V., et al., “Distinguisher-based attacks on public-key cryptosystems using Reed — Solomon codes”, Des. Codes Cryptogr., 73 (2014), 641–666 | DOI | MR | Zbl
[17] Otmani A. and Kalachi H., “Square code attack on a modified Sidelnikov cryptosystem”, LNCS, 9084, 2015, 173–183 | MR | Zbl
[18] Couvreur A. and Lequesne M., “On the security of subspace subcodes of Reed — Solomon codes for public key encryption”, IEEE Trans. Inform. Theory, 68:1 (2022), 632–648 | DOI | MR | Zbl
[19] Morelos-Zaragoza R. H., The Art of Error Correcting Coding, John Wiley Sons, Ltd., 2006, 263 pp.
[20] Deundyak V. M. and Kosolapov Yu. V., “Cryptosystem on induced group codes”, Model. i Analiz Inform. Sistem, 23:2 (2016), 137–152 (in Russian) | MR
[21] Deundyak V. M. and Kosolapov Yu. V., “Analysis of the stability of some code cryptosystems based on the decomposition of codes into a direct sum”, Vestn. YuUrGU. Ser. Matem. Modelirovanie i Programmirovanie, 12:3 (2019), 89–101 (in Russian) | MR | Zbl
[22] Egorova E., Kabatiansky G., Krouk E., and Tavernier C., “A new code-based public-key cryptosystem resistant to quantum computer attacks”, J. Phys. Conf. Ser., 1163 (2019), 1–5 | DOI
[23] Deundyak V. M., Kosolapov Yu. V., and Maystrenko I. A., “On the decipherment of Sidel'nikov-type cryptosystems”, LNCS, 12087, 2020, 20–40 | Zbl
[24] Kasami T. and Lin S., “On the construction of a class of majority-logic decodable codes”, IEEE Trans. Inform. Theory, IT-17:5 (1971), 600–610 | DOI | MR | Zbl
[25] Deundyak V. M., Kosolapov Yu. V., and Lelyuk E. A., “Decoding the tensor product of MLD codes and applications for code cryptosystems”, Automatic Control Comput. Sci., 52:7 (2018), 647–657 | DOI | MR
[26] Deundyak V. M. and Lelyuk E. A., “A graph-theoretical method for decoding some group MLD-codes”, J. Appl. Industr. Math., 14:2 (2020), 265–280 | DOI | MR | Zbl
[27] Randriambololona H., “On products and powers of linear codes under componentwise multiplication”, Algorithmic Arithmetic Geometry Coding Theory, 637 (2015), 3–78 | MR | Zbl
[28] Deundyak V. M. and Kosolapov Yu. V., “On the strength of asymmetric code cryptosystems based on the merging of generating matrices of linear codes”, XVI Intern. Symp. Prob. of Redundancy in Information and Control Systems (Russia, 2019), 143–148
[29] Deundyak V. M. and Kosolapov Yu. V., “On some properties of the Schur — Hadamard product for linear codes and their applications”, Prikladnaya Diskretnaya Matematika, 2020, no. 50, 72–86 | MR | Zbl
[30] Sidel'nikov V. M., Coding Theory, Fizmatlit Publ., M., 2008
[31] Grassl M. and Rotteler M., “Quantum block and convolutional codes from self-orthogonal product codes”, Proc. IEEE Int. Symp. Inf. Theory, 2005, 1018–1022
[32] Henderson H. V. and Searle S. R., “The vec-permutation matrix, the vec operator and Kronecker products: A review”, Linear and Multilinear Algebra, 1981, no. 9, 271–288 | DOI | MR | Zbl