On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of~binary Reed~--- Muller codes
Prikladnaâ diskretnaâ matematika, no. 3 (2022), pp. 22-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The current task of cryptography is the development of cryptosystems resistant to attacks using quantum computing. One of the promising encryption schemes is the McEliece system based on Goppa codes. However, this system has a number of disadvantages due to the structure of Goppa codes, which makes it relevant to search for other codes for the McEliece scheme. Important requirements for these codes are the presence of a fast decoder and ensuring the resistance of the corresponding cryptosystem to known attacks, including attacks with the Schur — Hadamard product. Many attempts to replace Goppa codes have failed because the corresponding cryptosystems have proven to be unstable against structural attacks. In this paper, it is proposed to use the $D$-construction ($D$-code) on binary Reed — Muller codes in the McEliece cryptosystem. This construction is a sum of a special kind of tensor products of binary Reed — Muller codes. There is a fast decoding algorithm for it. To analyze the security of the McEliece scheme on $D$-codes, we have constructed a structural attack that uses the Schur — Hadamard product of a $D$-code. To select the parameters that ensure the resistance of the cryptosystem to the constructed attack, we investigate the decomposition of the degree of the $D$-code into the direct sum of Reed — Muller codes and conclude about the set of strong keys of the cryptosystem.
Keywords: McEliece-type cryptosystem, structural security, binary Reed — Muller codes, sum of tensor products, Schur —Hadamard product.
@article{PDM_2022_3_a1,
     author = {Yu. V. Kosolapov and E. A. Lelyuk},
     title = {On the structural security of a {McEliece-type} cryptosystem based on the sum of tensor products of~binary {Reed~---} {Muller} codes},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {22--39},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2022_3_a1/}
}
TY  - JOUR
AU  - Yu. V. Kosolapov
AU  - E. A. Lelyuk
TI  - On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of~binary Reed~--- Muller codes
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2022
SP  - 22
EP  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2022_3_a1/
LA  - ru
ID  - PDM_2022_3_a1
ER  - 
%0 Journal Article
%A Yu. V. Kosolapov
%A E. A. Lelyuk
%T On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of~binary Reed~--- Muller codes
%J Prikladnaâ diskretnaâ matematika
%D 2022
%P 22-39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2022_3_a1/
%G ru
%F PDM_2022_3_a1
Yu. V. Kosolapov; E. A. Lelyuk. On the structural security of a McEliece-type cryptosystem based on the sum of tensor products of~binary Reed~--- Muller codes. Prikladnaâ diskretnaâ matematika, no. 3 (2022), pp. 22-39. http://geodesic.mathdoc.fr/item/PDM_2022_3_a1/

[1] Post-Quantum Cryptography, , National Institute of Standards and Technology (NIST), 2021 http://csrc.nist.gov/projects/post-quantum-cryptography

[2] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 1978, 42–44

[3] , 2020 https://classic.mceliece.org/nist/mceliece-20201010.pdf

[4] Sidel'nikov V. M., “Open coding based on Reed — Muller binary codes”, Discr. Math. Appl., 4:3 (1994), 191–207 | MR | Zbl

[5] Niederreiter H., “Knapsack-type cryptosystems and algebraic coding theory”, Problems Control Inform. Theory, 15:2 (1986), 159–166 | MR | Zbl

[6] Berger T. and Loidreau P., “How to mask the structure of codes for a cryptographic use”, Des. Codes Cryptogr., 35:1 (2005), 63–79 | DOI | MR | Zbl

[7] Janwa H. and Moreno O., “McEliece public cryptosystem using algebraic-geometric codes”, Des. Codes Cryptogr., 8 (1996), 293–307 | DOI | MR | Zbl

[8] Couvreur A., Marquez-Corbella I., and Pellikaan R., “Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes”, IEEE Trans. Inform. Theory, 8:63 (2017), 5404–5418 | DOI | MR | Zbl

[9] Chizhov I. V. and Borodin M. A., “Effective attack on the McEliece cryptosystem based on Reed — Muller codes”, Discr. Math. Appl., 24:5 (2014), 273–280 | MR | Zbl

[10] Wieschebrink C., “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes”, LNCS, 6061, 2010, 61–72 | MR | Zbl

[11] Sidel'nikov V. M. and Shestakov S. O., “On an encoding system constructed on the basis of generalized Reed — Solomon codes”, Discr. Math. Appl., 4:2 (1992), 439–444 | MR | Zbl

[12] Deundyak V. M., Druzhinina M. A., and Kosolapov Yu. V., “Modification of the Sidelnikov — Shestakov cryptanalytic algorithm for generalized Reed — Solomon codes and its software implementation”, Izv. Vuzov. Severo-Kavkazskiy Region. Ser. Tekhnicheskie Nauki, 2006, no. 4, 15–19 (in Russian)

[13] Minder L. and Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, LNCS, 4515, 2007, 347–360 | MR | Zbl

[14] Borodin M. A. and Chizhov I. V., “Classification of Hadamard products of codimension 1 subcodes of Reed — Muller codes”, Diskretnaya Matematika, 32:1 (2020), 115–134 (in Russian) | MR

[15] Wieschebrink C., “Two NP-complete problems in coding theory with an application in code based cryptography”, IEEE Intern. Symp. Inform. Theory (2006), 1733–1737

[16] Couvreur A., Gaborit P., Gauthier-Umana V., et al., “Distinguisher-based attacks on public-key cryptosystems using Reed — Solomon codes”, Des. Codes Cryptogr., 73 (2014), 641–666 | DOI | MR | Zbl

[17] Otmani A. and Kalachi H., “Square code attack on a modified Sidelnikov cryptosystem”, LNCS, 9084, 2015, 173–183 | MR | Zbl

[18] Couvreur A. and Lequesne M., “On the security of subspace subcodes of Reed — Solomon codes for public key encryption”, IEEE Trans. Inform. Theory, 68:1 (2022), 632–648 | DOI | MR | Zbl

[19] Morelos-Zaragoza R. H., The Art of Error Correcting Coding, John Wiley Sons, Ltd., 2006, 263 pp.

[20] Deundyak V. M. and Kosolapov Yu. V., “Cryptosystem on induced group codes”, Model. i Analiz Inform. Sistem, 23:2 (2016), 137–152 (in Russian) | MR

[21] Deundyak V. M. and Kosolapov Yu. V., “Analysis of the stability of some code cryptosystems based on the decomposition of codes into a direct sum”, Vestn. YuUrGU. Ser. Matem. Modelirovanie i Programmirovanie, 12:3 (2019), 89–101 (in Russian) | MR | Zbl

[22] Egorova E., Kabatiansky G., Krouk E., and Tavernier C., “A new code-based public-key cryptosystem resistant to quantum computer attacks”, J. Phys. Conf. Ser., 1163 (2019), 1–5 | DOI

[23] Deundyak V. M., Kosolapov Yu. V., and Maystrenko I. A., “On the decipherment of Sidel'nikov-type cryptosystems”, LNCS, 12087, 2020, 20–40 | Zbl

[24] Kasami T. and Lin S., “On the construction of a class of majority-logic decodable codes”, IEEE Trans. Inform. Theory, IT-17:5 (1971), 600–610 | DOI | MR | Zbl

[25] Deundyak V. M., Kosolapov Yu. V., and Lelyuk E. A., “Decoding the tensor product of MLD codes and applications for code cryptosystems”, Automatic Control Comput. Sci., 52:7 (2018), 647–657 | DOI | MR

[26] Deundyak V. M. and Lelyuk E. A., “A graph-theoretical method for decoding some group MLD-codes”, J. Appl. Industr. Math., 14:2 (2020), 265–280 | DOI | MR | Zbl

[27] Randriambololona H., “On products and powers of linear codes under componentwise multiplication”, Algorithmic Arithmetic Geometry Coding Theory, 637 (2015), 3–78 | MR | Zbl

[28] Deundyak V. M. and Kosolapov Yu. V., “On the strength of asymmetric code cryptosystems based on the merging of generating matrices of linear codes”, XVI Intern. Symp. Prob. of Redundancy in Information and Control Systems (Russia, 2019), 143–148

[29] Deundyak V. M. and Kosolapov Yu. V., “On some properties of the Schur — Hadamard product for linear codes and their applications”, Prikladnaya Diskretnaya Matematika, 2020, no. 50, 72–86 | MR | Zbl

[30] Sidel'nikov V. M., Coding Theory, Fizmatlit Publ., M., 2008

[31] Grassl M. and Rotteler M., “Quantum block and convolutional codes from self-orthogonal product codes”, Proc. IEEE Int. Symp. Inf. Theory, 2005, 1018–1022

[32] Henderson H. V. and Searle S. R., “The vec-permutation matrix, the vec operator and Kronecker products: A review”, Linear and Multilinear Algebra, 1981, no. 9, 271–288 | DOI | MR | Zbl