Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_3_a0, author = {M. A. Kovrizhnykh and D. B. Fomin}, title = {Heuristic algorithm for obtaining permutations with~given cryptographic properties using~a~generalized construction}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {5--21}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_3_a0/} }
TY - JOUR AU - M. A. Kovrizhnykh AU - D. B. Fomin TI - Heuristic algorithm for obtaining permutations with~given cryptographic properties using~a~generalized construction JO - Prikladnaâ diskretnaâ matematika PY - 2022 SP - 5 EP - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2022_3_a0/ LA - ru ID - PDM_2022_3_a0 ER -
%0 Journal Article %A M. A. Kovrizhnykh %A D. B. Fomin %T Heuristic algorithm for obtaining permutations with~given cryptographic properties using~a~generalized construction %J Prikladnaâ diskretnaâ matematika %D 2022 %P 5-21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2022_3_a0/ %G ru %F PDM_2022_3_a0
M. A. Kovrizhnykh; D. B. Fomin. Heuristic algorithm for obtaining permutations with~given cryptographic properties using~a~generalized construction. Prikladnaâ diskretnaâ matematika, no. 3 (2022), pp. 5-21. http://geodesic.mathdoc.fr/item/PDM_2022_3_a0/
[1] Biham E. and Shamir A., “Differential cryptanalysis of the full 16-round DES”, LNCS, 740, 1993, 487–496 | MR | Zbl
[2] Biham E. and Shamir A., “Differential cryptanalysis of DES-like cryptosystems”, J. Cryptology, 1991, no. 4, 3–72 | DOI | MR | Zbl
[3] Matsui M., “Linear cryptanalysis method for DES cipher”, LNCS, 765, 1994, 386–397 | Zbl
[4] Shannon S. E., “Communication theory of secrecy systems”, Bell Syst. Techn. J., 28 (1949), 656–715 | DOI | MR | Zbl
[5] Menyachikhin A. V., “Spectral-linear and spectral-differential methods for generating S-boxes having almost optimal cryptographic parameters”, Mat. Vopr. Kriptogr., 8:2 (2017), 97–116 | MR | Zbl
[6] De la Cruz Jiménez R.A., “Generation of 8-bit S-Boxes having almost optimal cryptographic properties using smaller 4-bit S-Boxes and finite field multiplication”, LNCS, 11368, 2019, 191–206 | MR | Zbl
[7] De la Cruz Jiménez R.A., On Some Methods for Constructing Almost Optimal S-Boxes and their Resilience against Side-Channel Attacks, , 2018 https://eprint.iacr.org/2018/618
[8] De la Cruz Jiménez R.A., “A method for constructing permutations, involutions and orthomorphisms with strong cryptographic properties”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2019, no. 12, 145–151
[9] Fomin D. B., “On approaches to constructing low-resource nonlinear transformations”, Obozrenie Prikladnoy i Promyshlennoy Matematiki, 25:4 (2018), 379–381 (in Russian) | MR
[10] Fomin D. B., “New classes of 8-bit permutations based on a butterfly structure”, Mat. Vopr. Kriptogr., 10:2 (2019), 169–180 | MR | Zbl
[11] Fomin D. B., “Construction of permutations on the space $V_{2m}$ by means of $(2m,~m)$-functions”, Mat. Vopr. Kriptogr., 11:3 (2020), 121–138 (in Russian) | MR | Zbl
[12] Fomin D. B., “On the algebraic degree and differential uniformity of permutations on the space $V_{2m}$ constructed via $(2m,~m)$-functions”, Mat. Vopr. Kriptogr., 11:4 (2020), 133–149 (in Russian) | MR | Zbl
[13] Menyachikhin A., “The change in linear and differential characteristics of substitution after the multiplication by transposition”, Mat. Vopr. Kriptogr., 11:2 (2020), 111–123 | MR | Zbl
[14] Fomin D. and Kovrizhnykh M., “On differential uniformity of permutations derived using a generalized construction”, CTCrypt 2021 https://ctcrypt.ru/files/files/2021/Fomin_Kovrizhnylh.pdf | MR
[15] Ivanov G., Nikolov N., and Nikova S., “Reversed genetic algorithms for generation of bijective s-boxes with good cryptographic properties”, Cryptogr. Commun., 8:2 (2016), 247–276 | DOI | MR | Zbl
[16] Biryukov A., Perrin L., and Udovenko A., “Reverse-engineering the s-box of Streebog, Kuznyechik and STRIBOBr1”, LNCS, 9665, 2016, 372–402 | MR | Zbl
[17] Canteaut A. and Perrin L., On CCZ-Equivalence, Extended-Affine Equivalence, and Function Twisting, Cryptology Archive, Report 2018/713, , 2018 https://eprint.iacr.org/2018/713 | MR | Zbl
[18] Kazymyrov O. V., Kazymyrova V. N., and Oliynykov R. V., “A method for generation of high-nonlinear S-boxes based on gradient descent”, Mat. Vopr. Kriptogr., 5:2 (2014), 71–78 | Zbl
[19] Lidl R. and Niederreiter H., Finite Fields, 2nd ed., Cambridge University Press, Cambridge, 1997, 755 pp. | MR | MR
[20] Kostrikin A. I., Introduction to Algebra, Springer Verlag, N.Y., 1982, 577 pp. | MR | Zbl
[21] Browning K. A., Dillon J. F., McQuistan M. T., and Wolfe A. J., “An APN permutation in dimension six”, 9th Int. Conf. Finite Fields Appl. 2009, Contemp. Math., 518, 2010, 33–42 | DOI | MR | Zbl
[22] Knuth D., Art of Computer Programming, v. 2, Seminumerical Algorithms, 3rd ed., Addison-Wesley Professional, 1997 | MR
[23] Kazymyrov O.V., Methods and tools for generating nonlinear replacement nodes for symmetric cryptographic algorithms, PhD Thesis, Kharkiv, 2013, 190 pp. (in Russian)
[24] O'Connor L., “Properties of linear approximation tables”, LNCS, 1008, 1995, 131–136 | Zbl
[25] Carlet C., “Vectorial Boolean functions for cryptography”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, eds. Y. Crama and P. Hammer, Cambridge University Press, Cambridge, 2010, 398–469 | DOI | MR | Zbl
[26] Yu Y., Wang M., and Li Y., Constructing differential 4-uniform permutations from know ones, Cryptology Archive, Report 2011/047, , 2011 https://eprint.iacr.org/2011/047