Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_2_a4, author = {E. A. Shliakhtina and D. Yu. Gamayunov}, title = {Anomaly detection in {JSON} structured data}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {83--103}, publisher = {mathdoc}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_2_a4/} }
E. A. Shliakhtina; D. Yu. Gamayunov. Anomaly detection in JSON structured data. Prikladnaâ diskretnaâ matematika, no. 2 (2022), pp. 83-103. http://geodesic.mathdoc.fr/item/PDM_2022_2_a4/
[1] JSON Schema, , 2021 www.json-schema.org
[2] A. A. Frozza, R. dos Santos Mello, F. S. da Costa, “An approach for schema extraction of JSON and extended JSON document collections”, IEEE Intern. Conf. IRI (6–9 July, 2018), 356–363
[3] M. Klettke, U. Störl, S. Scherzinger, “Schema extraction and structural outlier detection for JSON-based NoSQL data stores”, Conf. BTW (Hamburg, Germany, 4–6 March, 2015), 425–444
[4] M. A. Baazizi, D. Colazzo, G. Ghelli et al, “Parametric schema inference for massive JSON datasets”, VLDB J., 28:4 (2019), 497–521 | DOI
[5] B. N. Miller, Detection of Malicious Content in JSON Structured Data using Multiple Concurrent Anomaly Detection Methods, Dissertation, Eastern Michigan University, 2016, 125 pp.
[6] Payload Box, , 2021 www.github.com/payloadbox
[7] FuzzDB Project, , 2021 www.github.com/fuzzdb-project/fuzzdb
[8] SQL injection dataset, , 2021 www.kaggle.com/syedsaqlainhussain/sql-injection-dataset
[9] Cross site scripting XSS dataset for Deep learning, , 2021 www.kaggle.com/syedsaqlainhussain/cross-site-scripting-xss-dataset-for-deeplearning
[10] P. Baldi, S. Brunak, Y. Chauvin et al, “Assessing the accuracy of prediction algorithms for classification: an overview”, Bioinformatics, 16:5 (2000), 412–424 | DOI
[11] D. Chicco, G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation”, BMC Genomics, 21:1 (2020), 1–13 | DOI
[12] D. Chicco, N. Totsch, G. Jurman, “The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation”, BioData Mining, 14:1 (2021), 1–22 | DOI