Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_2_a3, author = {A. Yu. Nesterenko and A. M. Semenov}, title = {Methodology for assessing the security of cryptographic protocols}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {33--82}, publisher = {mathdoc}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_2_a3/} }
A. Yu. Nesterenko; A. M. Semenov. Methodology for assessing the security of cryptographic protocols. Prikladnaâ diskretnaâ matematika, no. 2 (2022), pp. 33-82. http://geodesic.mathdoc.fr/item/PDM_2022_2_a3/
[1] GOST R ISO/MEK 27033-1:2011. Informatsionnaya tekhnologiya. Metody i sredstva obespecheniya bezopasnosti. Bezopasnost setei. Ch. 1. Obzor i kontseptsii, Standartinform, M., 2012, 73 pp.
[2] R 1323565.1.012-2017. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Printsipy razrabotki i modernizatsii shifrovalnykh (kriptograficheskikh) sredstv zaschity informatsii, Standartinform, M., 2017, 28 pp.
[3] D. Dolev, A. Yao, “On the security of public key protocols”, IEEE Trans. Inform. Theory, 29:2 (1983), 198–208 | DOI | MR | Zbl
[4] D. Basin, C. Cremers, “Modeling and analyzing security in the presence of compromising adversaries”, LNCS, 6345, 2010, 340–356 | MR
[5] G. Lowe, “Breaking and fixing the Needham Schroeder Public-Key Protocol using FDR”, LNCS, 1055, 1996, 1–20
[6] GOST R 50922-2006. Zaschita informatsii. Osnovnye terminy i opredeleniya, 2008 https://docs.cntd.ru/document/1200058320
[7] M. Bellare, P. Rogaway, “Entity authentication and key distribution”, LNCS, 773, 1993, 232–249 | MR
[8] M. Bellare, D. Pointcheval, P. Rogaway, “Authenticated key exchange secure against dictionary attacks”, LNCS, 1807, 2000, 139–155 | Zbl
[9] M. Bellare, P. Rogaway, “Provably secure session key distribution the three party case”, 27th ACM Symp. Theory Computing, ACM Press, 1995, 57–66 | Zbl
[10] S. Blake-Wilson, D. Johnson, A. Menezes, “Key agreement protocols and their security analysis”, LNCS, 1355, 1997, 30–45 | MR | Zbl
[11] S. Blake-Wilson, A. Menezes, “Entity authentication and authenticated key transport protocols employing asymmetric techniques”, LNCS, 1361, 1998, 137–158 | Zbl
[12] R. Canetti, H. Krawczyk, “Analysis of key-exchange protocols and their use for building secure channels”, LNCS, 2045, 2001, 453–474 | MR | Zbl
[13] B. LaMacchia, K. Lauter, A. Mityagin, “Stronger security of authenticated key exchange”, LNCS, 4784, 2007, 1–16 | Zbl
[14] H. Krawczyk, “HMQV: A high-performance secure Diffie Hellman protocol”, LNCS, 3621, 2005, 546–566 | MR | Zbl
[15] A. Menezes, B. Ustaoglu, “On the importance of public-key validation in the MQV and HMQV key agreement protocols”, LNCS, 4329, 2006, 133–147 | MR | Zbl
[16] M. Rabin, Digitized Signatures and Public Key Functions as Intractable as Factorization, Technical Report: MIT/LCS/TR-212, MIT Laboratory for Computer Science, Cambridge, 1979
[17] S. Goldwasser, S. Micali, “Probabilistic encryption”, J. Computer System Sci., 28 (1984), 270–299 | DOI | MR | Zbl
[18] W. Mao, Modern Cryptography: Theory and Practice, Prentice Hall, New Jersey, 2003, 707 pp.
[19] C. Boyd, A. Mathuria, D. Stebila, Protocols for Authentication and Key Establishment, Second Ed., Springer Verlag, Berlin–Heidelberg, 2020, 521 pp. | Zbl
[20] A. P. Alferov, A. Yu. Zubov, A. S. Kuzmin, A. V. Cheremushkin, Osnovy kriptografii, Gelios ARV, M., 2002, 480 pp.
[21] A. V. Babash, G. P. Shankin, Kriptografiya, Solon-Press, M., 2007, 512 pp.
[22] E. K. Alekseev, L. R. Akhmetzyanova, I. B. Oshkin, S. V. Smyshlyaev, “Obzor uyazvimostei nekotorykh protokolov vyrabotki obschego klyucha s autentifikatsiei na osnove parolya i printsipy postroeniya protokola SESPAKE”, Matematicheskie voprosy kriptografii, 7:4 (2016), 7–28 | MR | Zbl
[23] L. R. Ahmetzyanova, E. K. Alekseev, G. K. Sedov et al, “Practical significance of security bounds for standardized internally re-keyed block cipher modes”, Matematicheskie voprosy kriptografii, 10:2 (2019), 31–46 | MR | Zbl
[24] R 1323565.1.030-2020. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Ispolzovanie kriptograficheskikh algoritmov v protokole bezopasnosti transportnogo urovnya (TLS 1.3), Standartinform, M., 2020, 73 pp.
[25] R 1323565.1.028-2018. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Kriptograficheskie mekhanizmy zaschischennogo vzaimodeistviya kontrolnykh i izmeritelnykh ustroistv, Standartinform, M., 2019, 66 pp.
[26] A. Yu. Nesterenko, “Ob odnom podkhode k postroeniyu zaschischennykh soedinenii”, Matematicheskie voprosy kriptografii, 4:2 (2013), 101–111 | Zbl
[27] A. Yu. Nesterenko, P. A. Lebedev, A. M. Semenov, Kratkii analiz kriptograficheskikh mekhanizmov zaschischennogo vzaimodeistviya kontrolnykh i izmeritelnykh ustroistv, Kriptograficheskie issledovaniya, Tekhnicheskii komitet po standartizatsii «Kriptograficheskaya zaschita informatsii», 2019 https://tc26.ru/standarts/kriptograficheskie-issledovaniya/
[28] A. M. Semenov, “Analysis of Russian key-agreement protocols using automated verification tools”, Matematicheskie voprosy kriptografii, 8:2 (2017), 131–142 | MR
[29] R 1323565.1.035-2021. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Ispolzovanie rossiiskikh kriptograficheskikh algoritmov v protokole zaschity informatsii ESP, Standartinform, M., 2021, 52 pp.
[30] A. V. Cheremushkin, “Kriptograficheskie protokoly: osnovnye svoistva i uyazvimosti”, Prikladnaya diskretnaya matematika. Prilozhenie, 2009, no. 2, 115–150 | Zbl
[31] IETF. RFC 3552. Guidelines for Writing RFC Text on Security Considerations, 2003 https://tools.ietf.org/html/rfc3552
[32] The AVISPA Project. Properties (Goals), 2021 http://www.avispa-project.org/delivs/6.1/d6-1/node3.html
[33] GOST R 53113.1-2008 Informatsionnaya tekhnologiya. Zaschita informatsionnykh tekhnologii i avtomatizirovannykh sistem ot ugroz informatsionnoi bezopasnosti, realizuemykh s ispolzovaniem skrytykh kanalov. Ch. 1. Obschie polozheniya, Standartinform, M., 2008, 12 pp.
[34] GOST R 53113.2-2009 Informatsionnaya tekhnologiya. Zaschita informatsionnykh tekhnologii i avtomatizirovannykh sistem ot ugroz informatsionnoi bezopasnosti, realizuemykh s ispolzovaniem skrytykh kanalov. Ch. 2. Rekomendatsii po organizatsii zaschity informatsii, informatsionnykh tekhnologii i avtomatizirovannykh sistem ot atak s ispolzovaniem skrytykh kanalov, Standartinform, M., 2009, 12 pp.
[35] V. V. Vidyakin, “O svyazi skrytykh informatsionnykh kanalov i subprotokolov”, Obozrenie prikl. i promyshl. matem., 13:1 (2006), 87–88
[36] A. V. Knyazev, A. F. Ronzhin, “Instrumentalnyi analiz mutnykh protokolov”, Obozrenie prikl. i promyshl. matem., 14:4 (2007), 577–646 | MR
[37] S. V. Matveev, “Nekotorye podkhody k otsenke propusknoi sposobnosti skrytykh kanalov v IP-setyakh”, Sistemy vysokoi dostupnosti, 8:2 (2012), 68–71
[38] S. Blake-Wilson, A. Menezes, “Unknown key-share attacks on the Station-to-Station (STS) protocol”, LNCS, 1560, 1999, 154–170 | Zbl
[39] W. Diffie, P. van Oorschot, M. Wiener, “Authentication and authenticated key exchanges”, Des. Codes Crypt., 2 (1992), 107–125 | DOI | MR
[40] IETF. RFC 8654. Extended Message Support for BGP, 2019 https://tools.ietf.org/html/rfc8654
[41] IETF. RFC 3748. Extensible Authentication Protocol (EAP), 2004 https://tools.ietf.org/html/rfc3748
[42] IETF. RFC 7029. Extensible Authentication Protocol (EAP) Mutual Cryptographic Binding, 2013 https://tools.ietf.org/html/rfc7029
[43] C. Cremers, Scyther Semantics and Verification of Security Protocols, Ph.D. Thesis, Eindhoven Univ. Technology, 2006, 205 pp.
[44] Proverif: Automatic Cryptographic Protocol Verifier, User Manual and Tutorial, 2020, 150 pp. http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
[45] GOST R 58833-2020. Zaschita informatsii. Identifikatsiya i autentifikatsiya. Obschie polozheniya, Standartinform, M., 2020, 28 pp.
[46] B. A. Pogorelov, V. N. Sachkov (red.), Slovar kriptograficheskikh terminov, MTsMNO, M., 2006, 94 pp.
[47] GOST R ISO/MEK 9594-8-98. Informatsionnaya tekhnologiya. Vzaimosvyaz otkrytykh sistem. Spravochnik. Ch. 8. Osnovy autentifikatsii, Standartinform, M., 2001, 29 pp.
[48] J. G. Fletcher, “An arithmetic checksum for serial transmissions”, IEEE Trans. Communications, 30:1 (1982), 247–252 | DOI
[49] W. W. Peterson, D. T. Brown, “Cyclic codes for error detection”, Proc. IRE, 49:1 (1961), 228–235 | DOI | MR
[50] GOST R 34.11-2012. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Funktsiya kheshirovaniya, Standartinform, M., 2012, 25 pp.
[51] E. Alashwali, K. Rasmussen, What's in a Downgrade? A Taxonomy of Downgrade Attacks in the TLS Protocol and Application Protocols Using TLS, Cryptology ePrint Archive, Report 2019/1083, 2019 https://eprint.iacr.org/2019/1083
[52] I. F. Kachalin, A. S. Kuzmin, E. A. Suslov i dr., “Ob osnovnykh kontseptsiyakh kriptograficheskoi stoikosti”, Tezisy XII Vseros. shkoly-kollokviuma po stokhasticheskim metodam i VI Vseros. simpoziuma po prikladnoi i promyshlennoi matematike (Sochi–Dagomys, 1–7 oktyabrya 2005 g.), 982–983
[53] A. B. Los, A. Yu. Nesterenko, M. I. Rozhkov, Kriptograficheskie metody zaschity informatsii, Izd-vo Yurait, M., 2016, 473 pp.
[54] IETF. RFC 4303. IP Encapsulating Security Payload (ESP), 2005 https://datatracker.ietf.org/doc/html/rfc4303
[55] IETF. RFC 7296. Internet Key Exchange Protocol Version 2 (IKEv2), 2014 https://datatracker.ietf.org/doc/html/rfc7296
[56] H. Krawczyk, “SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie–Hellman and its use in the IKE protocols”, LNCS, 2729, 2003, 400–425 | MR | Zbl
[57] R 50.1.113-2016. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Kriptograficheskie algoritmy, soputstvuyuschie primeneniyu algoritmov elektronnoi tsifrovoi podpisi i funktsii kheshirovaniya, Standartinform, M., 2016, 28 pp.