Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_2_a2, author = {V. A. Roman'kov}, title = {Superpositions of free {Fox} derivations}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {28--32}, publisher = {mathdoc}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_2_a2/} }
V. A. Roman'kov. Superpositions of free Fox derivations. Prikladnaâ diskretnaâ matematika, no. 2 (2022), pp. 28-32. http://geodesic.mathdoc.fr/item/PDM_2022_2_a2/
[1] R. H. Fox, “Free differential calculus I — Derivation in the free group ring”, Ann. Math., 57 (1953), 547–560 | DOI | MR
[2] R. H. Crowell, R. H. Fox, Introduction to Knot Theory, Springer Verlag, N.Y., 1963, x+182 pp. | MR
[3] E. I. Timoshenko, Endomorphisms and Universal Theories of Solvable Groups, Novosibirsk State Technical University, Novosibirsk, 2011, 327 pp. (in Russian)
[4] V. A. Roman'kov, Essays in Algebra and Cryptology. Solvable Groups, Dostoevsky Omsk State University, Omsk, 2017, 267 pp.
[5] A. Myasnikov, V. Roman'kov, A. Ushakov, A. Vershik, “The word and geodesic problems for free solvable groups”, Trans. Amer. Math. Soc., 362:9 (2010), 4655–4682 | DOI | MR | Zbl
[6] V. Anashin, A. Khrennikov, Applied Algebraic Dynamics, de Gruyter Expositions in Math., 49, Walter de Gruyter GmbH Co, Berlin–N.Y., 2009, 557 pp. | DOI | MR | Zbl
[7] V. Anashin, “Noncommutative algebraic dynamics: Ergodic theory for profinite groups”, Proc. Steklov Institute of Mathematics, 265 (2009), 30–58 | DOI | MR | Zbl
[8] V. S. Anashin, “Uniformly distributed sequences in computer algebra, or how to construct program generators of random numbers”, J. Math. Sci., 89:4 (1998), 1355–1390 | DOI | MR | Zbl
[9] R. H. Gilman, “Formal languages and infinite groups”, Geometric and Computational Perspectives of Infinite Groups (Minneapolis, MN, and New Brunswick, NJ), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 25, 1994, 27–51 | DOI | MR
[10] V. A. Roman'kov, Rational subsets in groups, Dostoevsky Omsk State University, Omsk, 2014, 176 pp. (in Russian)
[11] Roman'kov V. A., “Polycyclic, metabelian or soluble of type $(FP)_\infty$ groups with Boolean algebra of rational sets and biautomatic soluble groups are virtually abelian”, Glasgow Math. J., 60:1 (2018), 209–218 | DOI | MR | Zbl
[12] V. A. Roman'kov, “Rationality of verbal subsets in solvable groups”, Algebra and Logic, 57:1 (2018), 39–48 | DOI | MR | Zbl
[13] V. Roman'kov, A. Myasnikov, “On rationality of verbal subsets in a group”, Theory of Computing Systems, 52:4 (2013), 587–598 | DOI | MR | Zbl