Superpositions of free Fox derivations
Prikladnaâ diskretnaâ matematika, no. 2 (2022), pp. 28-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fox derivations are an effective tool for studying free groups and their group rings. Let $F_r$ be a free group of finite rank $r$ with basis $\{f_1, \ldots, f_r\}.$ For every $i$, the partial Fox derivations $\partial /\partial f_i$ and $\partial /\partial f_i^{-1}$ are defined on the group ring $\mathbb{Z}[F_r]$. For $k\geq 2$, their superpositions $D_{f_i^{\epsilon}} = \partial /\partial f_i^{\epsilon_k} \circ \ldots \circ \partial /\partial f_i^{\epsilon_1}, \epsilon = (\epsilon_1, \ldots , \epsilon_k) \in \{\pm 1\}^k,$ are not Fox derivations. In this paper, we study the properties of superpositions $D_{f_i^{\epsilon}}$. It is shown that the restrictions of such superpositions to the commutant $F_r'$ are Fox derivations. As an application of the obtained results, it is established that for any rational subset $R$ of $F_r'$ and any $i$ there are parameters $k$ and $\epsilon$ such that $R$ is annihilated by $D_{f_i^{\epsilon}}$.
Keywords: free group, group ring, Fox derivations, annihilators, rational subsets.
@article{PDM_2022_2_a2,
     author = {V. A. Roman'kov},
     title = {Superpositions of free {Fox} derivations},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {28--32},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2022_2_a2/}
}
TY  - JOUR
AU  - V. A. Roman'kov
TI  - Superpositions of free Fox derivations
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2022
SP  - 28
EP  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2022_2_a2/
LA  - en
ID  - PDM_2022_2_a2
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%T Superpositions of free Fox derivations
%J Prikladnaâ diskretnaâ matematika
%D 2022
%P 28-32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2022_2_a2/
%G en
%F PDM_2022_2_a2
V. A. Roman'kov. Superpositions of free Fox derivations. Prikladnaâ diskretnaâ matematika, no. 2 (2022), pp. 28-32. http://geodesic.mathdoc.fr/item/PDM_2022_2_a2/

[1] R. H. Fox, “Free differential calculus I — Derivation in the free group ring”, Ann. Math., 57 (1953), 547–560 | DOI | MR

[2] R. H. Crowell, R. H. Fox, Introduction to Knot Theory, Springer Verlag, N.Y., 1963, x+182 pp. | MR

[3] E. I. Timoshenko, Endomorphisms and Universal Theories of Solvable Groups, Novosibirsk State Technical University, Novosibirsk, 2011, 327 pp. (in Russian)

[4] V. A. Roman'kov, Essays in Algebra and Cryptology. Solvable Groups, Dostoevsky Omsk State University, Omsk, 2017, 267 pp.

[5] A. Myasnikov, V. Roman'kov, A. Ushakov, A. Vershik, “The word and geodesic problems for free solvable groups”, Trans. Amer. Math. Soc., 362:9 (2010), 4655–4682 | DOI | MR | Zbl

[6] V. Anashin, A. Khrennikov, Applied Algebraic Dynamics, de Gruyter Expositions in Math., 49, Walter de Gruyter GmbH Co, Berlin–N.Y., 2009, 557 pp. | DOI | MR | Zbl

[7] V. Anashin, “Noncommutative algebraic dynamics: Ergodic theory for profinite groups”, Proc. Steklov Institute of Mathematics, 265 (2009), 30–58 | DOI | MR | Zbl

[8] V. S. Anashin, “Uniformly distributed sequences in computer algebra, or how to construct program generators of random numbers”, J. Math. Sci., 89:4 (1998), 1355–1390 | DOI | MR | Zbl

[9] R. H. Gilman, “Formal languages and infinite groups”, Geometric and Computational Perspectives of Infinite Groups (Minneapolis, MN, and New Brunswick, NJ), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 25, 1994, 27–51 | DOI | MR

[10] V. A. Roman'kov, Rational subsets in groups, Dostoevsky Omsk State University, Omsk, 2014, 176 pp. (in Russian)

[11] Roman'kov V. A., “Polycyclic, metabelian or soluble of type $(FP)_\infty$ groups with Boolean algebra of rational sets and biautomatic soluble groups are virtually abelian”, Glasgow Math. J., 60:1 (2018), 209–218 | DOI | MR | Zbl

[12] V. A. Roman'kov, “Rationality of verbal subsets in solvable groups”, Algebra and Logic, 57:1 (2018), 39–48 | DOI | MR | Zbl

[13] V. Roman'kov, A. Myasnikov, “On rationality of verbal subsets in a group”, Theory of Computing Systems, 52:4 (2013), 587–598 | DOI | MR | Zbl