Investigation of automorphism group for code associated with optimal curve of genus three
Prikladnaâ diskretnaâ matematika, no. 2 (2022), pp. 5-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is contained in two theorems. In the first theorem, it is proved that the mapping $\lambda: \mathcal{L}(mP_\infty) \rightarrow \mathcal{L}(mP_\infty)$ has the multiplicative property on the corresponding Riemann — Roch space associated with the divisor $mP_\infty$ which defines some algebraic-geometric code if the number of points of degree one in the function field of genus three optimal curve over finite field with a discriminant $\lbrace -19, -43, -67, -163 \rbrace$ has the lower bound $12m/(m-3)$. Using an explicit calculation with the valuations of the pole divisors of the images of the basis functions $x,y,z$ in the function field of the curve via the mapping $\lambda$, we have proved that the automorphism group of the function field of our curve is a subgroup in the automorphism group of the corresponding algebraic-geometric code. In the second theorem, it is proved that if $m \geq 4$ and $n>12m/(m-3)$, then the automorphism group of the function field of our curve is isomorphic to the automorphism group of the algebraic-geometric code associated with divisors $\sum\limits_{i=1}^nP_i$ and $mP_\infty$, where $P_i$ are points of the degree one.
Keywords: optimal curve, algebraic-geometric code, function field
Mots-clés : automorphism group of AG-code.
@article{PDM_2022_2_a0,
     author = {E. S. Malygina},
     title = {Investigation of automorphism group for code associated with optimal curve of genus three},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--16},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2022_2_a0/}
}
TY  - JOUR
AU  - E. S. Malygina
TI  - Investigation of automorphism group for code associated with optimal curve of genus three
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2022
SP  - 5
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2022_2_a0/
LA  - ru
ID  - PDM_2022_2_a0
ER  - 
%0 Journal Article
%A E. S. Malygina
%T Investigation of automorphism group for code associated with optimal curve of genus three
%J Prikladnaâ diskretnaâ matematika
%D 2022
%P 5-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2022_2_a0/
%G ru
%F PDM_2022_2_a0
E. S. Malygina. Investigation of automorphism group for code associated with optimal curve of genus three. Prikladnaâ diskretnaâ matematika, no. 2 (2022), pp. 5-16. http://geodesic.mathdoc.fr/item/PDM_2022_2_a0/

[1] Goppa V. D., Geometry and Codes, Kluwer Academic Publishers, 1988 | MR | Zbl

[2] H. Stichtenoth, “On automorphisms of geometric Goppa codes”, J. Algebra, 130 (1990), 113–121 | DOI | MR | Zbl

[3] C. Xing, “Automorphism group of elliptic codes”, Comm. Algebra, 23:11 (1995), 4061–4072 | DOI | MR | Zbl

[4] C. Xing, “On automorphism groups of the Hermitian codes”, IEEE Trans. Inform. Theory, 41:6 (1995), 1629–1635 | DOI | MR | Zbl

[5] E. S. Malygina, “Issledovanie gruppy avtomorfizmov koda, assotsiirovannogo s optimalnoi krivoi roda tri”, Prikladnaya diskretnaya matematika. Prilozhenie, 2018, no. 11, 115–117

[6] H. Stichtenoth, Algebraic Function Fields and Codes, Springer Verlag, 1991 | MR

[7] E. Alekseenko, S. Aleshnikov, N. Markin, A. Zaytsev, “Optimal curves over finite fields with discriminant — 19”, Finite Fields and Their Appl., 17:4 (2011), 350–358 | DOI | MR | Zbl

[8] E. Alekseenko, Explicit construction of optimal curves of genus three, PhD Thesis, 2016 http://iitp.ru/upload/content/1203/AES_disser.pdf