Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_1_a5, author = {L. X. Hung}, title = {Unique list colorability of the graph $K^n_2+K_r$}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {88--94}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_1_a5/} }
L. X. Hung. Unique list colorability of the graph $K^n_2+K_r$. Prikladnaâ diskretnaâ matematika, no. 1 (2022), pp. 88-94. http://geodesic.mathdoc.fr/item/PDM_2022_1_a5/
[1] M. Behzad, G. Chartrand, Introduction to the Theory of Graphs, Allyn and Bacon, Boston, 1971 | MR | Zbl
[2] V. G. Vizing, “Coloring the vertices of a graph in prescribed colors”, Diskret. Analiz, 29 (1976), 3–10 (in Russian) | MR | Zbl
[3] P. Erdös, A. L. Rubin, H. Taylor, “Choosability in graphs”, Proc. West Coast Conf. Combinatorics, Graph Theory, Computing (Arcata, CA, September 1979), Congr. Numer., 26, 125–157 | MR
[4] J. H. Dinitz, W. J. Martin, “The stipulation polynomial of a uniquely list colorable graph”, Australasian J. Combin., 11 (1995), 105–115 | MR | Zbl
[5] M. Mahdian, E. S. Mahmoodian, “A characterization of uniquely 2-list colorable graphs”, Ars Combin., 51 (1999), 295–305 | MR | Zbl
[6] W. Wang, X. Liu, “List-coloring based channel allocation for open-spectrum wireless networks”, Proc. VTC'05, 2005, 690–694
[7] L. X. Hung, “List-chromatic number and chromatically unique of the graph $K^r_2+O_k$”, Selecciones Matematicas, Universidad Nacional de Trujillo, 06:01 (2019), 26–30
[8] L. X. Hung, “Colorings of the graph $K^m_2 + K_n$”, J. Sib. Fed. Univ. Math. Phys., 13:3 (2020), 297–305 | DOI | MR | Zbl
[9] M. Ghebleh, E. S. Mahmoodian, “On uniquely list colorable graphs”, Ars Combin., 59 (2001), 307–318 | MR | Zbl