Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_1_a2, author = {M. A. Dryuchenko and A. A. Sirota}, title = {Image stegoanalysis using deep neural networks and~heteroassociative integral transformations}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {35--58}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_1_a2/} }
TY - JOUR AU - M. A. Dryuchenko AU - A. A. Sirota TI - Image stegoanalysis using deep neural networks and~heteroassociative integral transformations JO - Prikladnaâ diskretnaâ matematika PY - 2022 SP - 35 EP - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2022_1_a2/ LA - ru ID - PDM_2022_1_a2 ER -
M. A. Dryuchenko; A. A. Sirota. Image stegoanalysis using deep neural networks and~heteroassociative integral transformations. Prikladnaâ diskretnaâ matematika, no. 1 (2022), pp. 35-58. http://geodesic.mathdoc.fr/item/PDM_2022_1_a2/
[1] O. I. Shelukhin, Steganografiya. Algoritmy i programmnaya realizatsiya, Goryachaya liniya Telekom, M., 2017, 592 pp.
[2] B. Czaplewski, “Current trends in the field of steganalysis and guidelines for constructions of new steganalysis schemes”, Przegla̧d Telekomunikacyjny + Wiadomósci Telekomunikacyjne, 2017, no. 10, 1121–1125
[3] S. Lyu, H. Farid, “Detecting hidden messages using higher-order statistics and support vector machines”, Intern. Workshop Inform. Hiding, Springer, Berlin–Heidelberg, 2002, 340–354 https://farid.berkeley.edu/downloads/publications/ih02.pdf
[4] S. Lyu, H. Farid, “Steganalysis using color wavelet statistics and one-class support vector machines” (California, USA, 2004), Proc. SPIE, 2004, 35–45 https://www.researchgate.net/publication/221011180_Steganalysis_using_color_wavelet_statistics_and_one-class_support_vector_machines | DOI
[5] T. Pevny, P. Bas, J. Fridrich, “Steganalysis by subtractive pixel adjacency matrix”, IEEE Trans. Inform. Forensics Security, 5:2 (2010), 215–224 | DOI
[6] J. Fridrich, “Rich models for steganalysis of digital images”, IEEE Trans. Inform. Forensics Security, 7:3 (2012), 868–882 | DOI
[7] V. Holub, J. Fridrich, “Random projections of residuals for digital image steganalysis”, IEEE Trans. Inform. Forensics Security, 8:12 (2013), 1996–2006 | DOI
[8] P. Bas, T. Filler, T. Pevny, “Break our steganographic system the ins and outs of organizing BOSS”, LNCS, 6958, 2011, 59–70
[9] PPG-LIRMM-COLOR base, http://www.lirmm.fr/chaumont/PPG-LIRMM-COLOR.html
[10] T. Pevny, T. Filler, P. Bas, “Using high-dimensional image models to perform highly undetectable steganography”, LNCS, 6387, 2010, 161–177
[11] V. Holub, J. Fridrich, “Digital image steganography using universal distortion”, Proc. 1st ACM Workshop IHMMSec, ACM, 2013, 59–68
[12] V. Holub, J. Fridrich, “Designing steganographic distortion using directional filters”, Proc. 4th IEEE Intern. Workshop WIFS, 2012, 234–239
[13] J. Kodovsky, J. Fridrich, V. Holub, “Ensemble classifiers for steganalysis of digital media”, IEEE Trans. Inform. Forensics Security, 7:2 (2010), 434–444 | MR
[14] V. A. Monarev, A. I. Pestunov, “Effektivnoe obnaruzhenie steganograficheski skrytoi informatsii posredstvom integralnogo klassifikatora na osnove szhatiya dannykh”, Prikladnaya diskretnaya matematika, 2018, no. 40, 59–71 | MR
[15] R. Tabares-Soto, R. Ramos-Pollan, G. Isaza, “Deep learning applied to steganalysis of digital images: A systematic review”, IEEE Access, 7 (2019), 68970–68990 | DOI
[16] Y. Qian, J. Dong, W. Wang, T. Tan, “Deep learning for steganalysis via convolutional neural networks”, Proc. Int. Symp. Electron. Imag., 9409 (2015), 94090J
[17] M. Yedroudj, F. Comby, M. Chaumont, “Yedrouj-Net: An efficient CNN for spatial steganalysis”, Proc. IEEE Intern. Conf. Acoustics, Speech Signal Processing, 2018, 2092–2096
[18] R. Zhang, F. Zhu, J. Liu, G. Liu, Efficient Feature Learning and Multisizeimage Steganalysis Based on CNN, 2018, arXiv: 1807.11428
[19] A. A. Polunin, E. A. Yandashevskaya, “Ispolzovanie apparata svertochnykh neironnykh setei dlya stegoanaliza tsifrovykh izobrazhenii”, Trudy ISP RAN, 32:4 (2020), 155–164
[20] A. A. Sirota, M. A. Dryuchenko, “Obobschennye algoritmy szhatiya izobrazhenii na fragmentakh proizvolnoi formy i ikh realizatsiya s ispolzovaniem iskusstvennykh neironnykh setei”, Kompyuternaya optika, 2015, no. 5, 751–761
[21] M. A. Dryuchenko, A. A. Sirota, “Interpolation and masking effects of heteroassociative compressive transformations”, J. Phys.: Conf. Ser., 1902 (2020), 1–10 | DOI
[22] M. A. Dryuchenko, A. A. Sirota, “Geteroassotsiativnye szhimayuschie preobrazovaniya tsifrovykh izobrazhenii i ikh interpoliruyuschie i maskiruyuschie svoistva”, Sb. trudov Mezhdunar. nauch.-tekhn. konf. «Aktualnye problemy prikladnoi matematiki, informatiki i mekhaniki» (Voronezh, 07–09 dekabrya 2020), 312–322
[23] A. A. Sirota, M. A. Dryuchenko, E. Yu. Mitrofanova, “Metod sozdaniya tsifrovykh vodyanykh znakov na osnove geteroassotsiativnykh szhimayuschikh preobrazovanii izobrazhenii i ego realizatsiya s ispolzovaniem iskusstvennykh neironnykh setei”, Kompyuternaya optika, 2018, no. 3, 483–494
[24] A. A. Sirota, M. A. Dryuchenko, E. Yu. Mitrofanova, “Neirosetevye funktsionalnye modeli i algoritmy preobrazovaniya informatsii dlya sozdaniya tsifrovykh vodyanykh znakov”, Izv. vuzov. Radioelektronika, 2015, no. 1, 3–16
[25] A. A. Sirota, M. A. Dryuchenko, A. Yu. Ivankov, “Stegoanaliz tsifrovykh izobrazhenii s ispolzovaniem metodov poverkhnostnogo i glubokogo mashinnogo obucheniya: izvestnye podkhody i novye resheniya”, Vestnik Voronezhskogo gos. un-ta. Ser. Sistemnyi analiz i informatsionnye tekhnologii, 2021, no. 1, 33–53 | MR
[26] M. Kutter, F. Jordan, F. Bossen, “Digital signature of color images using amplitude modulation”, Proc. SPIE, 518–526
[27] J. Zhao, E. Koch, “Embedding robust labels into images for copyright protection”, Proc. Intern. Congress Intellectual Property Rights for Specialized Information, Knowledge and New Technologies (Vienna, August 1995), 242–251
[28] X. P. Zhang, S. Z. Wang, “Efficient steganographic embedding by exploiting modification direction”, IEEE Commun. Let., 10:11 (2006), 781–783 | DOI
[29] G. Paul, I. Davidson, I. Mukherjee, S. S. Ravi, “Keyless dynamic optimal multi-bit image steganography using energetic pixels”, Multimedia Tools Appl., 76 (2017), 7445–7471 | DOI
[30] Digital Data Embedding Laboratory Department of Electrical and Computer Engineering SUNY Binghamton, http://dde.binghamton.edu/download/stego_algorithms/