Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences
Prikladnaâ diskretnaâ matematika, no. 1 (2022), pp. 5-13
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, using numbers of a special kind ${H_{n}^{(r)}= \sum\limits_{m=r}^{n}{\ldots}\sum\limits_{l=3}^{s-1}\sum\limits_{j=2}^{l-1}\sum\limits_{i=1}^{j-1}{\dfrac{1}{ijl\ldots m}}}$, $r,n \in\mathbb{N}$, called multiharmonic numbers, incomplete closed forms of two fundamental sequences of integers given as a recursion are synthesized. The first recursion $u_{k+1}^{(m)}=(k+m)[2u_{k}^{(m)}-(k-1)u_{k-1}^{(m)}]$, ${u_{k}\in\mathbb{Z}}$, ${k\in\mathbb{N}}$, ${m\in\mathbb{Z}^{+}}$, under the conditions ${m=0}$, $u_{0}^{(0)}=u_{1}^{(0)}=1$ is factorial-generating: $u_{k}^{(0)}=k!$. The second recursion defines a sequence of Stirling numbers of the first kind ${s(n,k)}$, ${n,k\in\mathbb{Z}^{+}}$, and by the property ${|s(n,1)|=(n-1)!}$ is also factorial-generating. The resulting closed form for the first recursion is ${u_{k}^{(m)}=\sum\limits_{i=0}^{k-1}{\text{C}_{k-1}^{i}{\text{A}_{k+m-1}^{k-i}{m^{i-1}}}}}$, ${k,m\in\mathbb{N}}$, ${\text{A}_{n}^{m}}={n!}/{(n-m)!}$, ${\text{C}_{n}^{m}}={n!}/{(n-m)!m!}$. The closed form for the second recursion is ${s(n,k)= H_{n-1}^{(k-1)}{(n-1)!}{(-1)^{n+k}}}$, ${k,n\in\mathbb{N}}$. Closed forms are not complete, since they are not used for cases: ${m=k=0}$, ${n=k=0}$.
Keywords:
closed forms of recurrent equations with nonlinear coefficients, interpolation of recurrent sequences, generating recursion functions, factorial-generating sequences, hyperharmonic numbers, multiharmonic numbers, Stirling numbers of the first kind.
@article{PDM_2022_1_a0,
author = {I. V. Statsenko},
title = {Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {5--13},
publisher = {mathdoc},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2022_1_a0/}
}
TY - JOUR AU - I. V. Statsenko TI - Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences JO - Prikladnaâ diskretnaâ matematika PY - 2022 SP - 5 EP - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2022_1_a0/ LA - ru ID - PDM_2022_1_a0 ER -
%0 Journal Article %A I. V. Statsenko %T Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences %J Prikladnaâ diskretnaâ matematika %D 2022 %P 5-13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2022_1_a0/ %G ru %F PDM_2022_1_a0
I. V. Statsenko. Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences. Prikladnaâ diskretnaâ matematika, no. 1 (2022), pp. 5-13. http://geodesic.mathdoc.fr/item/PDM_2022_1_a0/