Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences
Prikladnaâ diskretnaâ matematika, no. 1 (2022), pp. 5-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, using numbers of a special kind ${H_{n}^{(r)}= \sum\limits_{m=r}^{n}{\ldots}\sum\limits_{l=3}^{s-1}\sum\limits_{j=2}^{l-1}\sum\limits_{i=1}^{j-1}{\dfrac{1}{ijl\ldots m}}}$, $r,n \in\mathbb{N}$, called multiharmonic numbers, incomplete closed forms of two fundamental sequences of integers given as a recursion are synthesized. The first recursion $u_{k+1}^{(m)}=(k+m)[2u_{k}^{(m)}-(k-1)u_{k-1}^{(m)}]$, ${u_{k}\in\mathbb{Z}}$, ${k\in\mathbb{N}}$, ${m\in\mathbb{Z}^{+}}$, under the conditions ${m=0}$, $u_{0}^{(0)}=u_{1}^{(0)}=1$ is factorial-generating: $u_{k}^{(0)}=k!$. The second recursion defines a sequence of Stirling numbers of the first kind ${s(n,k)}$, ${n,k\in\mathbb{Z}^{+}}$, and by the property ${|s(n,1)|=(n-1)!}$ is also factorial-generating. The resulting closed form for the first recursion is ${u_{k}^{(m)}=\sum\limits_{i=0}^{k-1}{\text{C}_{k-1}^{i}{\text{A}_{k+m-1}^{k-i}{m^{i-1}}}}}$, ${k,m\in\mathbb{N}}$, ${\text{A}_{n}^{m}}={n!}/{(n-m)!}$, ${\text{C}_{n}^{m}}={n!}/{(n-m)!m!}$. The closed form for the second recursion is ${s(n,k)= H_{n-1}^{(k-1)}{(n-1)!}{(-1)^{n+k}}}$, ${k,n\in\mathbb{N}}$. Closed forms are not complete, since they are not used for cases: ${m=k=0}$, ${n=k=0}$.
Keywords: closed forms of recurrent equations with nonlinear coefficients, interpolation of recurrent sequences, generating recursion functions, factorial-generating sequences, hyperharmonic numbers, multiharmonic numbers, Stirling numbers of the first kind.
@article{PDM_2022_1_a0,
     author = {I. V. Statsenko},
     title = {Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--13},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2022_1_a0/}
}
TY  - JOUR
AU  - I. V. Statsenko
TI  - Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2022
SP  - 5
EP  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2022_1_a0/
LA  - ru
ID  - PDM_2022_1_a0
ER  - 
%0 Journal Article
%A I. V. Statsenko
%T Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences
%J Prikladnaâ diskretnaâ matematika
%D 2022
%P 5-13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2022_1_a0/
%G ru
%F PDM_2022_1_a0
I. V. Statsenko. Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences. Prikladnaâ diskretnaâ matematika, no. 1 (2022), pp. 5-13. http://geodesic.mathdoc.fr/item/PDM_2022_1_a0/

[1] V. P. Varin, “Faktorialnoe preobrazovanie nekotorykh klassicheskikh kombinatornykh posledovatelnostei”, Zh. vychisl. matem. i matem. fiz., 58:11 (2018), 1747–1770 | Zbl

[2] V. P. Varin, “Ob interpolyatsii nekotorykh rekurrentnykh posledovatelnostei”, Zh. vychisl. matem. i matem. fiz., 61:6 (2021), 913–925 | Zbl

[3] V. P. Varin, “Kombinatornye preobrazovaniya posledovatelnostei kak uskoriteli skhodimosti stepennykh ryadov”, Teoreticheskie osnovy konstruirovaniya chislennykh algoritmov resheniya zadach matematicheskoi fiziki, Tez. dokl. XXII Vseros. konf., posvyaschennoi pamyati K. I. Babenko (Abrau-Dyurso, 3-8 sentyabrya, 2018), IPM im. M. V. Keldysha, M., 2018, 29

[4] K. L. Geut, S. S. Titov, “O ponizhenii poryadka lineinykh rekurrentnykh uravnenii s postoyannymi koeffitsientami”, Prikladnaya diskretnaya matematika. Prilozhenie, 2017, no. 10, 12–13

[5] K. L. Geut, S. S. Titov, “O prostykh chislakh i rekurrentnykh sootnosheniyakh”, Aktualnye problemy prikladnoi matematiki i mekhaniki, Tez. dokl. VII Vseros. konf., posvyaschennoi pamyati akademika A. F. Sidorova (Abrau-Dyurso, 15-21 sentyabrya, 2014), UrO RAN, Ekaterinburg, 2014, 20–21

[6] R. Grekhem, D. Knut, O. Patashnik, Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998 | MR

[7] A. T. Benjamin, D. Gaebler, R. Gaebler, “A combinatorial approach to hyperharmonic numbers”, Electr. J. Combinat. Number Theory, 3 (2003) | MR

[8] D. H. Conway, R. K. Guy, Tne Book of Numbers, Springer Verlag, N.Y., 1996. | MR

[9] I. Mezö, “Some inequalities for hyperharmonic series”, Adv. in Inequalities for Special Functions, Nova Science Publ. House, 2006, 121–125

[10] I. V. Statsenko, “Rasshirenie svoistv multigarmonicheskikh chisel”, Tochnaya nauka, 2021, no. 107, 2–4