The palette index of Sierpi\'nski triangle graphs and Sierpi\'nski graphs
Prikladnaâ diskretnaâ matematika, no. 4 (2021), pp. 99-108
Voir la notice de l'article provenant de la source Math-Net.Ru
The palette of a vertex $v$ of a graph $G$ in a proper edge coloring is the set of colors assigned to the edges which are incident to $v$. The palette index of $G$ is the minimum number of palettes occurring among all proper edge colorings of $G$. In this paper, we consider the palette index of Sierpiński graphs $S_p^n$ and Sierpiński triangle graphs $\widehat{S}_3^n$. In particular, we determine the exact value of the palette index of Sierpiński triangle graphs. We also determine the palette index of Sierpiński graphs $S_p^n$ where $p$ is even, $p=3$, or $n=2$ and $p=4l+3$.
Keywords:
Sierpiński triangle graph, Sierpiński graph.
Mots-clés : palette index
Mots-clés : palette index
@article{PDM_2021_4_a4,
author = {A. Ghazaryan},
title = {The palette index of {Sierpi\'nski} triangle graphs and {Sierpi\'nski} graphs},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {99--108},
publisher = {mathdoc},
number = {4},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PDM_2021_4_a4/}
}
A. Ghazaryan. The palette index of Sierpi\'nski triangle graphs and Sierpi\'nski graphs. Prikladnaâ diskretnaâ matematika, no. 4 (2021), pp. 99-108. http://geodesic.mathdoc.fr/item/PDM_2021_4_a4/