The palette index of Sierpi\'nski triangle graphs and Sierpi\'nski graphs
Prikladnaâ diskretnaâ matematika, no. 4 (2021), pp. 99-108

Voir la notice de l'article provenant de la source Math-Net.Ru

The palette of a vertex $v$ of a graph $G$ in a proper edge coloring is the set of colors assigned to the edges which are incident to $v$. The palette index of $G$ is the minimum number of palettes occurring among all proper edge colorings of $G$. In this paper, we consider the palette index of Sierpiński graphs $S_p^n$ and Sierpiński triangle graphs $\widehat{S}_3^n$. In particular, we determine the exact value of the palette index of Sierpiński triangle graphs. We also determine the palette index of Sierpiński graphs $S_p^n$ where $p$ is even, $p=3$, or $n=2$ and $p=4l+3$.
Keywords: Sierpiński triangle graph, Sierpiński graph.
Mots-clés : palette index
@article{PDM_2021_4_a4,
     author = {A. Ghazaryan},
     title = {The palette index of {Sierpi\'nski} triangle graphs and {Sierpi\'nski} graphs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {99--108},
     publisher = {mathdoc},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2021_4_a4/}
}
TY  - JOUR
AU  - A. Ghazaryan
TI  - The palette index of Sierpi\'nski triangle graphs and Sierpi\'nski graphs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2021
SP  - 99
EP  - 108
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2021_4_a4/
LA  - en
ID  - PDM_2021_4_a4
ER  - 
%0 Journal Article
%A A. Ghazaryan
%T The palette index of Sierpi\'nski triangle graphs and Sierpi\'nski graphs
%J Prikladnaâ diskretnaâ matematika
%D 2021
%P 99-108
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2021_4_a4/
%G en
%F PDM_2021_4_a4
A. Ghazaryan. The palette index of Sierpi\'nski triangle graphs and Sierpi\'nski graphs. Prikladnaâ diskretnaâ matematika, no. 4 (2021), pp. 99-108. http://geodesic.mathdoc.fr/item/PDM_2021_4_a4/