Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2021_4_a4, author = {A. Ghazaryan}, title = {The palette index of {Sierpi\'nski} triangle graphs and {Sierpi\'nski} graphs}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {99--108}, publisher = {mathdoc}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDM_2021_4_a4/} }
A. Ghazaryan. The palette index of Sierpi\'nski triangle graphs and Sierpi\'nski graphs. Prikladnaâ diskretnaâ matematika, no. 4 (2021), pp. 99-108. http://geodesic.mathdoc.fr/item/PDM_2021_4_a4/
[1] West D., Introduction to Graph Theory, Prentice-Hall, 2014 | MR
[2] Horňák M., Kalinowski R., Meszka M., Woźniak M., “Minimum number of palettes in edge colorings”, Graphs Combin., 30 (2014), 619–626 | DOI | MR | Zbl
[3] Bonvicini S. and Mazzuoccolo G., “Edge-colorings of 4-regular graphs with the minimum number of palettes”, Graphs Combin., 32 (2016), 1293–1311 | DOI | MR | Zbl
[4] Holyer I., “The NP-completeness of edge-coloring”, Siam J. Comput., 10 (1981), 718–720 | DOI | MR | Zbl
[5] Avesani M., Bonisoli A., Mazzuoccolo G., “A family of multigraphs with large palette index”, Ars Math. Contemp., 17 (2019), 115–124 | DOI | MR | Zbl
[6] Horňák M., Hudák J., “On the palette index of complete bipartite graphs”, Discussiones Mathematicae Graph Theory, 38 (2018), 463–476 | DOI | MR | Zbl
[7] Casselgren C., Petrosyan P., “Some results on the palette index of graphs”, Discrete Math. Theor. Comput. Sci., 21:3 (2019), A2 | MR
[8] Bonisoli A., Bonvicini S., Mazzuoccolo G., “On the palette index of a graph: the case of trees”, Lecture Notes of Seminario Interdisciplinare di Matematica, 14 (2017), 49–55 | MR | Zbl
[9] Klavžar S., Milutinović U., “Graphs $S(n,k)$ and a variant of the Tower of Hanoi problem”, Czechoslovak Math. J., 47:122 (1997), 95–104 | MR | Zbl
[10] Scorer R., Grundy P., Smith C., “Some binary games”, Math. Gaz., 28 (1944), 96–103 | DOI
[11] Hinz A., Klavžar S., Zemljič S., “A survey and classification of Sierpiński-type graphs”, Discrete Math., 217:3 (2017), 565–600 | DOI | MR | Zbl
[12] Klavžar S., “Coloring Sierpiński graphs and Sierpiński triangle graphs”, Taiwan J. Math., 12 (2008), 513–522 | MR | Zbl
[13] Jakovac M., Klavžar S., “Vertex-, edge-, and total-colorings of Sierpiński-like graphs”, Discrete Math., 309:6 (2009), 1548–1556 | DOI | MR | Zbl
[14] Teguia A., Godbole A., “Sierpiński triangle graphs and some of their properties”, Australas. J. Combin., 35 (2006), 181–192 | MR | Zbl
[15] Hinz A. and Schief A., “The average distance on the Sierpiński gasket”, Probab. Theory Related Fields, 87 (1990), 129–138 | DOI | MR | Zbl
[16] Kaimanovich V., “Random walks on Sierpiński graphs: hyperbolicity and stochastic homogenization”, Fractals in Graz 2001, Trends in Mathematics, eds. P. Grabner, W. Woess, Birkhäuser, Basel, 2003, 145–183 | MR | Zbl
[17] Imran M., Hafi S., Gao W., Farahani M. R., “On topological properties of Sierpiński networks”, Chaos Soliton. Fract., 98 (2017), 199–204 | DOI | MR | Zbl