Optimal algorithm for converting an acyclic digraph to a cluster
Prikladnaâ diskretnaâ matematika, no. 4 (2021), pp. 94-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

A bipartite digraph $\widehat{G}$ with edges from the first part $V_1$ to the second part $V_2$ is considered. The minimum edge cover in the digraph $\widehat{G}$ consists of a set of unrelated stars $G_1^1,\ldots,G_1^M$ with a root in $V_1$ and stars $G_2^1,\ldots,G_2^N$ with a root in $V_2$. Denote by $m$ the number of leaves in the stars $G_1^1,\ldots,G_1^M$ and by $n$ the number of leaves in the stars $G_2^1,\ldots,G_2^N$ and put $p(\widehat{G})$ the minimum number of additional edges, the introduction of which into the digraph $\widehat{G}$ transforms it into a strongly connected digraph. It is proved that: 1) $p(\widehat{G})=\max(m+N,n+M)$; 2) $p(\widehat{G})=\max(|V_1|,|V_2|)$; 3) $p(\mathcal{G})=\max(|\mathcal{V}_1|,|\mathcal{V}_2|)$ for an acyclic digraph $\mathcal{G}$, where $\mathcal{V}_1$ is the set of vertices of $\mathcal{G}$, from which the arcs only leave, $\mathcal{V}_2$ — the set of vertices of $\mathcal{G}$, into which the arcs only enter. Algorithms for determining the minimum set of additional edges have been proposed. They are based on finding the minimum edge coverage in a bipartite graph and connecting unconnected stars with the minimum number of edges.
Keywords: acyclic digraph, cluster, Hamiltonian cycle, feedback, minimal edge cover.
Mots-clés : bipartite digraph
@article{PDM_2021_4_a3,
     author = {G. Sh. Tsitsiashvili and M. A. Osipova},
     title = {Optimal algorithm for converting an acyclic digraph to a cluster},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {94--98},
     publisher = {mathdoc},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2021_4_a3/}
}
TY  - JOUR
AU  - G. Sh. Tsitsiashvili
AU  - M. A. Osipova
TI  - Optimal algorithm for converting an acyclic digraph to a cluster
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2021
SP  - 94
EP  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2021_4_a3/
LA  - ru
ID  - PDM_2021_4_a3
ER  - 
%0 Journal Article
%A G. Sh. Tsitsiashvili
%A M. A. Osipova
%T Optimal algorithm for converting an acyclic digraph to a cluster
%J Prikladnaâ diskretnaâ matematika
%D 2021
%P 94-98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2021_4_a3/
%G ru
%F PDM_2021_4_a3
G. Sh. Tsitsiashvili; M. A. Osipova. Optimal algorithm for converting an acyclic digraph to a cluster. Prikladnaâ diskretnaâ matematika, no. 4 (2021), pp. 94-98. http://geodesic.mathdoc.fr/item/PDM_2021_4_a3/

[1] Tarjan R., “Dehpt-first search and linear graph algorithms”, SIAM J. Comput., 1:2 (1972), 146–160 | DOI | MR | Zbl

[2] Tsitsiashvili G. Sh., Osipova M. A., Losev A. S., “Graph clustering algorithms”, Bull. Voronezh State University. Ser. Physics, Math., 2016, no. 1, 145–149 (in Russian) | Zbl

[3] Alekseev V. E., Zakharova D. V., Graph Theory, tutorial, Nizhny Novgorod State University, N. Novgorod, 2017, 119 pp. (in Russian)

[4] Graph Theory, 2017

[5] Cormen T. H., Leiserson Ch. E., Rivest R. L., Stein Cl., Introduction to Algorithms, 3rd Ed., MIT Press, Cambridge, 2009, 499 pp. | MR | Zbl