Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2021_4_a2, author = {E. K. Alekseev and V. D. Nikolaev and S. V. Smyshlyaev}, title = {Impact of randomization in {VKO} mechanisms on overall security level}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {77--93}, publisher = {mathdoc}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2021_4_a2/} }
TY - JOUR AU - E. K. Alekseev AU - V. D. Nikolaev AU - S. V. Smyshlyaev TI - Impact of randomization in VKO mechanisms on overall security level JO - Prikladnaâ diskretnaâ matematika PY - 2021 SP - 77 EP - 93 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2021_4_a2/ LA - ru ID - PDM_2021_4_a2 ER -
E. K. Alekseev; V. D. Nikolaev; S. V. Smyshlyaev. Impact of randomization in VKO mechanisms on overall security level. Prikladnaâ diskretnaâ matematika, no. 4 (2021), pp. 77-93. http://geodesic.mathdoc.fr/item/PDM_2021_4_a2/
[1] Diffie W., Hellman M., “New directions in cryptography”, IEEE Trans. Inform. Theory, 22:6 (1976), 644–654 | DOI | MR | Zbl
[2] Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography, NIST Special Publication 800-56A Revision 3, 2018 | DOI
[3] Rescorla E., The Transport Layer Security (TLS) Protocol Version 1.3, 2018 https://tools.ietf.org/html/rfc8446 | Zbl
[4] GOST R 34.11-2012 “Information Technology. Cryptographic Data Security. Hash Function”, Standartinform, M., 2012 (in Russian)
[5] Popov V., Kurepkin I., Leontiev S., Additional Cryptographic Algorithms for Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms, 2001 https://tools.ietf.org/html/rfc4357
[6] Recommendations for Standardization R 50.1.113–2016 “Information Technology. Cryptographic Data Security. Additional Cryptographic Algorithms for Digital Signature Algorithms and Hash Function”, Standartinform, M., 2016 (in Russian)
[7] GOST R 34.10-2012 “Information Technology. Cryptographic Data Security. Processes of Digital Signature Creation and Verification”, Standartinform, M., 2012 (in Russian)
[8] Smyshlyaev S., Alekseev E., Popov V., Leontiev S., Guidelines on the Cryptographic Algorithms to Accompany the Usage of Standards GOST R 34.10-2012 and GOST R 34.11-2012 https://tools.ietf.org/html/rfc7836
[9] Recommendations for Standardization R 1323565.1.020-2020 “Information Technology. Cryptographic Data Security. Usage of Russian Cryptographic Algorithms in TLS 1.2 Protocol”, Standartinform, M., 2020 (in Russian)
[10] Methodical Recommendations MR 26.2.002-2013 “Usage of GOST 28147-89, GOST R 34.10 and GOST R 34.11 in CMS”, Standartinform, M., 2013 (in Russian)
[11] Technical Specification TS 26.2.001-2015 “Usage of GOST 28147-89, GOST R 34.11-2012 and GOST R 34.10-2001 for Key Agreement in IKE and ISAKMP Protocols”, Standartinform, M., 2015 (in Russian)
[12] Recommendations for Standardization “Information technology. Cryptographic data security. Usage of Russian cryptographic algorithms in Internet key exchange protocol version 2 (IKEv2)”, proekt (in Russian)
[13] Alekseev E. K., Oshkin I. B., Popov V. O., et al., “On the prospects of using twisted Edwards elliptic curves with the GOST R 34.10-2012 standard and the key exchange algorithm based on it”, Problemy Informatsionnoy Bezopasnosti. Komp'yuternye Sistemy, 2014, no. 3, 60–66 (in Russian)
[14] Alekseev E. K., Nikolaev V. D., Smyshlyaev S. V., “On the security properties of Russian standardized elliptic curves”, Matem. Vopr. Kriptogr., 9:3 (2018), 5–32 | MR | Zbl
[15] SafeCurves: Choosing Safe Curves for Elliptic-Curve Cryptography, https://safecurves.cr.yp.to/index.html
[16] Lim C. H., Lee P. J., “A key recovery attack on discrete log-based schemes using a prime order subgroup”, LNCS, 1294, 1997, 249–263 | MR | Zbl
[17] Biehl I., Meyer B., Muller V., “Differential fault attacks on elliptic curve cryptosystems (extended abstract)”, LNCS, 1880, 2000, 131–146 | MR | Zbl
[18] Semaev I. A., Summation Polynomials and the Discrete Logarithm Problem on Elliptic Curves, Cryptology ePrint Archive: Report 2004/031, , 2004 https://eprint.iacr.org/2004/031.pdf
[19] Petit C., Quisquater J.-J., “On polynomial systems arising from a Weil descent”, LNCS, 7658, 2012, 451–466 | MR | Zbl
[20] Semaev I. A., New Algorithm for the Discrete Logarithm Problem on Elliptic Curves, Cryptology ePrint Archive: Report 2015/310, , 2015 https://eprint.iacr.org/2015/310.pdf | Zbl
[21] Courtois N., On Splitting a Point with Summation Polynomials in Binary Elliptic Curves, Cryptology ePrint Archive: Report 2016/003, https://eprint.iacr.org/2016/003.pdf
[22] Petit C., Kosters M., Messeng A., “Algebraic approaches for the elliptic curve discrete logarithm problem over prime fields”, LNCS, 9615, 2016, 3–18 | MR | Zbl
[23] Hankerson D., Menezes A. J., Vanstone S., Guide to Elliptic Curve Cryptography, Springer Verlag, N.Y., 2004 | MR | Zbl
[24] Schnorr C.-P., “Security of blind discrete log signatures against interactive attacks”, LNCS, 2229, 2001, 1–12 | Zbl
[25] Benhamouda F., Lepoint T., Loss J., et al., “On the (in)security of ROS'”, LNCS, 12696, 2021, 33–53 | MR | Zbl
[26] Koblitz N., Menezes A., “Critical perspectives on provable security: Fifteen years of “another look” papers”, Adv. Math. Commun., 13 (2019), 517–558 | DOI | MR | Zbl