Invariant subspaces in SPN block cipher
Prikladnaâ diskretnaâ matematika, no. 4 (2021), pp. 58-76
Voir la notice de l'article provenant de la source Math-Net.Ru
Let there exist subsets of $\mathbb{F}_2^n$ that the non-linear layer of an SP-network maps to some other subset of $\mathbb{F}_2^n$. We study the possibility of existence of subsets of $\mathbb{F}_2^n$ that are invariant under the SP-layer. It is shown that subspaces invariant under nonlinear transformations from some classes are not preserved by any matrix without nonzero elements of the field extension $\mathbb{F}_2$. The paper also studies the question of the existence of invariant subsets of the form $A_{i_1} \times \ldots \times A_{i_m}$, where $n = m \cdot n’$, $A_{i_j} \subseteq \mathbb{F}_2^{n’}$, $j = 1, \ldots, m$. Some properties of such invariant sets of the round function of the SP-layer are proved on the basis of the graph-theoretic and group-theoretic approaches. We study the capacity of these sets and, using additional assumptions, show that $A_{i_j}$, $j = 1, \ldots,m$, should be cosets of some subspaces of $\left(\mathbb{F}_2^{n’}, +\right)$ of equal size. A constructive way of constructing such sets is proposed.
Keywords:
SP-network, SPN, invariant subspaces.
@article{PDM_2021_4_a1,
author = {D. I. Trifonov and D. B. Fomin},
title = {Invariant subspaces in {SPN} block cipher},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {58--76},
publisher = {mathdoc},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2021_4_a1/}
}
D. I. Trifonov; D. B. Fomin. Invariant subspaces in SPN block cipher. Prikladnaâ diskretnaâ matematika, no. 4 (2021), pp. 58-76. http://geodesic.mathdoc.fr/item/PDM_2021_4_a1/